

Quantifying GHG Budgets in Southeast Asia by Remote Sensing and Models

Dr. Wataru Takeuchi (Remote sensing)

Institute of Industrial Science The University of Tokyo

Sep. 19, 2017 @ GEOSS-AP, Hanoi, Vietnam

Today's contents

- Carbon-water simulator for wild fire emission estimation in Asia with bio-geophysical model and remote sensing (JICA-JST SATREPS and MEXT project)
- Mangrove and seagrass biomass mapping in Asia (JAXA SAFE project of APRSAF)
- CH4 emission observation from rice paddy field in Asia with remote sensing and in-situ measurements

Wataru Takeuchi, Ph. D. @ Institute of Industrial Science, University of Tokyo, Japan

Carbon-water simulator for wild fire emission estimation in Asia with bio-geophysical model and remote sensing (JICA-JST SATREPS and MEXT project)

Carbon sequestration in peatlands as a source of CO₂ and CH₄

Boreal forested wetlands

North America

Global peatland area by country (in percentage)

Central Africa Southeast Asia

Amazon Tropical peat forests

Siberia

Rice paddy in Asia

Source: Parish et al., 2008.

Land use map from MODIS

Vegetation Integrated Simulator for Trace gases

Objectives

(Developed in NIES & JAMSTEC)

- Atmosphere-ecosystem biogeochemical interactions
- Especially, major greenhouse gases (CO₂, CH₄, and N₂O) budget [Tier 3]
- Assessment of climatic impacts and biotic feedbacks

Carbon-cycle (Sim-CYCLE-based)

Nitrogen-cycle

Point-global, daily-monthly

- CO₂: photosynthesis & respiration
- CH₄: production & oxidation
- N₂O: nitrification & denitrification
- LUC emission: cropland conversion
- Fire emission: CO₂, CO, BC, etc.
- BVOC emission: isoprene etc.
- Others: N₂, NO, NH₃, erosion

Global biomass in forest and agricultural land

Tropical forest: 150-300 (tC/ha), Boreal forest: 50-70 (tC/ha) Savanna: 20-30 (tC/ha), Agcitultural land: 2-10 (tC/ha) grassland: 0.5 (tC/ha)

In-situ biomass measurement at sample plot

Latitude, longitud

beed

- Air temperature
- Soil temperature
- Relative air humidity
- Volumetric Water Content (VWC)

tude

The main species of the plant

DTM, biomass and plant phenology via UAV

5cm ground resolution

Biomass loss rate with FRP

Figure 13. Relationship between biomass combustion rate and fire radiative power calculated from *Miscanthus* fires (in total twenty nine plots of the sort shown in Figure 12c). Source data were subsampled at a three-minute interval to avoid influences from temporal autocorrelation. The OLS linear best-fit passing through the origin (dark line) is shown, along with the 95% confidence intervals on the mean (grey line) and on the prediction (dashed line), the latter having slopes 0.446 and 0.482, respectively.

Annual carbon emissions (as g C/m²/yr) averaged over 2002-2015

Above ground biomass 2.92±0.28 PgC/yr

[Takeuchi, in preparation]

Carbon emissions in 2015 from wild fires hit the highest records in the last 15 years

Myanmar

Thailand

[W. Takeuchi, T. Hirano and O. Roswintiarti, 2011]

Borneo island

Mangrove

Montane forest

Plantation/Cropland

Water

Degraded forest -

Lowland forest -

Peat forest

Flux measurement in central Kalimantan

DF (Drained forest) 2.35S, 114.00E

Evapotranspiration 4mm/da Precipitation 2000mm/yr

UDF (Un-drained forest) 2.32S, 113.90E

DBF (Drained burnt forest) 2.34S, 114.03E

[Hirano, 2008]

Combustion process of peat fire

Ground water level is a governing factor in peat fire

Water-carbon-simulator (WCS)

ower ground water table of peatland in Indonesia are prone to firesand large carbon emission sources.

Ground water estimation at Palangkaraya (LAT: -2.3, LON: 114.2) in Indonesia from 2007 to 2015

More fires in lower GWT years

Fire counts by MODIS

Comprehensive evaluation of carbon budget at peatland in Indonesia

(a) The sum of monthly ecosystem respiration (ER), gross primary production (GPP), and fire emission (FE) from whole peatlands of target area

(b) NBP from peatlands in Indonesia during 12 years. Net biome production is including the balance among ecosystem respiration, gross primary production, and fire emission in this study

angrove and seagrass biomass mapping in As (JAXA SAFE project under APRSAF)

Global mangroves in coastal ecosystems

A total of 15.2 million hectares of mangroves are exist worldwide and their main distribution is in the tropical areas. (USGS, 2009) About one third of the world's mangroves are found in Asia (39%), followed by Africa (21%) and North and Central America (15%) (FAO, 2007). Coastal ecosystems transfer carbon from the atmosphere and ocean into sediments

(Blue carbon)

Salt Marshes

(Conservation international, 2011)

Mangroves

MANGROVE FOREST MAP 2000 QUANG NINH PROVINCE

Mangrove change by Landsat from 1997 to 2013 Segara Anakan in Indonesia

Mangrove change 1997-2013

Impact of topography and tidal effect to mangrove biomass

Tidal height :

30042008 : -0.4 meter 09052008 : 1.0 meter 15062008 : -0.2 meter A.Water area B.Area with strongly affected by tidal height C.Area with not strongly affected by tidal height

Impact of tidal height → majority lower value on HV and HH

Above ground biomass (AGB) estimation based on ALOS PALSAR considering impact of topography and tidal height

Site	Location of mangrove zones	Average	Impact of tidal	Averages
	_	level of	height	AGB estimation
		topography	(on % area)	(ton/ha)
		(meters)		
a	Langsa Aceh	2.2 ± 5.4	95	1.57 - 20.65
b	Bengkalis Riau	4.9 ± 1.9	40	26.08
с	Indragiri hilir Riau	6.8 ± 4.7	4	14.64
d	Banyuasin South Sumatera	16.8 ± 4.9	4	26.68
e	Pontianak West Kalimantan	10.2 ± 3.3	4	18.76
f	Kota Baru South Kalimantan	9.5 ± 5.9	6	62.57
g	Kutai Kartanegara East Kalimatan	9.6 ± 4.8	6	47.59
h	Berau East Kalimantan	15.0 ± 5.4	4	31.38
i	Nunukan East Kalimantan	14.5 ± 3.4	4	32.51
j	Subang WestJava	3.0 ± 1.8	95	0.83 - 4.38
k	Cilacap Central Java	2.9 ± 2.1	90	1.70 - 19.36
1	Badung Bali	3.1 ± 2.0	73	3.47 - 85.56
m	Bombana South Sulawesi	8.8 ± 4.4	18	24.92
n	Muna South Sulawesi	10.6 ± 3.8	10	77.78
0	Sorong Papua	13.4 ± 4.5	5	85.76
р	Teluk Bintuni Papua	19.9 ± 11.2	6	17.79
q	Teluk Bintuni Papua	18.7 ± 8.3	4	23.30
r	Waropen Papua	19.3 ± 4.3	2	57.79
s	Asmat Papua	14.8 ± 3.5	2	23.30
t	Merauke Papua	11.7 ± 3.4	2	3.97

[Soni, Journal of Sensors, 2015]

Tang Ken Bay, Phuket, Thailand

Spectral signatures of seagrass and seaweed

Water column effects on spectral reflectance

In-situ spectral reflectance, @ 0m depth (Yamano et al., 2003) Simulated spectral reflectance on Case 1 water, @ 3m depth

The effects are needs to be corrected!

Preliminary results of analysis about optical and texture properties

- Class2 shows different pattern
- Class1 is the lowest
- Class4 is the highest
- Average focal variance (benthic roughness)
 - Class1 is the highest
 - Class2 & 4 are lowest

values

1.5

0.5

0

-0.5

-1

-1.5

BI23

BI24

BI34

Normalized Bottom Index

Aggregated classes by visual interpretation Legend Masked out Undefined Class 1 Class 2 Class 3 Class 3

Normalized average BI Average focal variance of

Concluding remarks

 Backscatter value of mangrove forest on HH value around -11 dB to - 6 dB and on HV value around -21 dB to -16 dB.

□ Higher AGB of mangrove forest (average more than 80 ton/ha)

- Meinmahla Kyun-Irrawaddy delta, Myanmar
- Preak Piphot River, Cambodia
- Sorong Papua, Indonesia
- Lower AGB of mangrove forest (average less than 5 ton/ha)
 - Sarikei Serawak, Malaysia
 - Langsa Aceh, Indonesia
 - Subang West Java, Indonesia
- In the future, we will try to improve the algorithm with included environmental conditions (i.e. moisture conditions, and weather dynamics) also topography and tidal height condition and more collecting ground survey data and information of AGB of mangrove forest in Southeast Asia for validation our result.

CH4 emission observation from rice paddy field in Asia with remote sensing and in-situ measurements (UTokyo-VAST-JAXA initiative)

Rice paddy for food and CH4

- 90 % of paddy fields in the world are in Asian countries and they are important as a staple food source and a source of atmospheric methane CH₄ [Wessmann, 2003].
- Important variable for modeling of regional biochemical cycle and climate [Dickinson, 1995].
- □ The improved understanding of paddy field distribution over large spatial scale has increased the interest in the above mentioned issues. ^{世界の米(生産量)}

2010/11 Walar@1913ke@20thi,201415 D. @ Institute of Industrial Science, University of Tokyo, Japan

Top-down and bottom-up approach in CH₄ measurements

Global rice mapping and CH4 estimation flow

- Preparing the dataset from MODIS, AMSR-E, and GOSAT data
- Creating the new water index with LSWC and V-S-W by unmixing method 2.
- 3. Assuming the sprouting season of rice by applying Fourier Transform to NDVI time series.

Detecting rice cropping phenology where NDVI comes to its peak 60 days after the new water index rise and making the global rice paddy field mapping

Estimating methane emission from each rice crops by utilizing the map, the new Wataru Takeuchi, Ph. D. @ Institute of Industrial Science, University of Tokyo, Japan new

Completely cloud-free vegetation and water indices from satellite remote sensing and image processing

MODIS+MTSAT+AMSR-E

20030101 Rice plant phenology and water regime are measured from space

MODIS VCI and AMSR-E LSWC captures rice cropping patterns in Sukhothai

MODIS VCI and AMSR-E LSWC captures rice cropping patterns in Suphanburi

MODIS VCI

Fourier transform analysis of NDVI

Rice field in Thailand (Oct. 8, 2011 to Nov. 8, 2011)

Water coverage change timing delay to ground water level changes

Synthetic Aperture RADAR [ALOS-2/PALSAR-2]

High-spatial resolution full polarimetric data

 \rightarrow Flooded soil detection irrespective of rice-growth stages

Obtained annual CH₄ emission data so far

Weather measurement station

- CH4 by laser meteorology
- Solar radiation (PYR)
- Soil mosture (EC-5)
- Air temperature and relative humidity (VP-3)
- Rainfall (ECRN-100)
- Wind speed and direction (Decagon)
- Data logger (Em50)
- Solar power supply and battery charger
- Data transfer via SIM
- Real-time data visualization at web

①Statistical modeling of daily CH₄ flux (mg C m⁻² day⁻¹)

Daily CH₄ fluxes

= γ * carbon_management / nonflooding_fallow / flooding_fallow / water_management *a*β

CH4 emission compared with column average by GOSAT and SCIAMACHY in Sichuan

Methane concentration (ppb)

Methane emission (Kt)

••••••••		
Coutry	Emission (100Gt)	EDGAR(100Gt)
China	9,301	14,130
India	8,201	3,979
Indonesia	2,985	2,658
Thailand	2,350	2,185
Bangladesh	2,286	2,213
Vietnam	2,149	1,820
Myanmar	1,442	1,555
Canbodia	486.3	489.3
Japan	363.7	764.9
SriLanka	296.7	264.9
Coutry	Emission (Gg)	EDGAR(Gg)
United States	289.2	394.6

Top 20 CH4 emitting country from rice paddy field

Coutry	Emission (Gg)	EDGAR(Gg)
United States	289.2	394.6
Nigeria	279.8	321.3
Pakistan	196.8	851.2
South Korea	177.7	309.8
Nepal	156.8	360.1
Iran	130.7	145.2
Philippines	122.5	1,075
Laos	88.15	115.7
Mali	83	51.82
Guinea	76.89	58.62
World total	31,750	35,060

[Jonai, 2014]

Still no J-VER methodology on CH₄ emission reduction through paddy water management.

The significance of CH_{4} from rice paddies is not recognized by stake holders.

Robust & transparent scientific evidence & MRV system is important ! Data source:

DRIVING SUSTAINABLE ECONOMIES

Ministry of the Environment

- Vegetation and water condition mapping of rice paddy field from remote sensing is demonstrated and global rice paddy and crop calendar mapping was carried out with 1km grid scale
- CH4 emission were estimated with remote sensing and emission factors by IPCC guideline 2006. They were compared with column average CH4 concentration and similar patterns were found in time-series of behaviors.
- CH4 emission were compiled in country level and compared with EDGAR database in good agreement.

Thank you