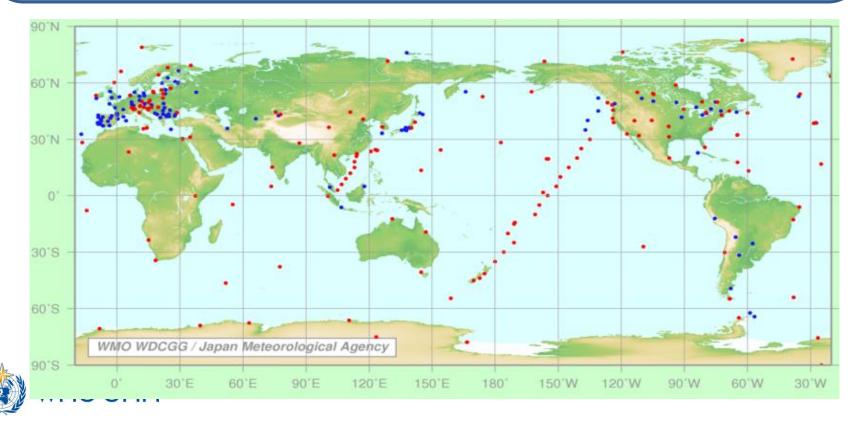
Implementation of the Integrated Global Greenhouse Gas Information System (IG³IS)

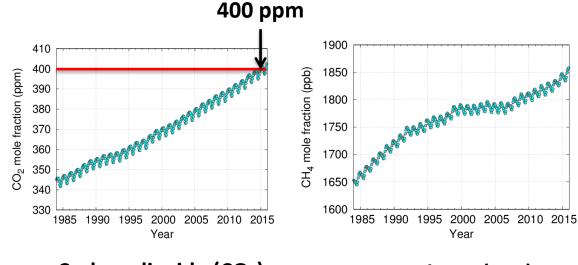
O.Tarasova* and BIG IG³IS Science Team

*WMO Research Department

WMO OMM


World Meteorological Organization Organisation météorologique mondiale

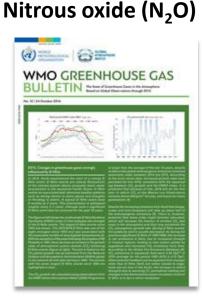
WMO Role in GHG Information and IG³IS



The Role of the World Meteorological Organization (WMO)

- Ensure high quality, consistent, continuous GHG and other observations of atmospheric composition
- Develop high quality atmospheric transport and data inversion models
- Coordinate global atmospheric measurements; improve models and analysis
- Leverage capabilities across programs and nations
- Build capacity in developing nations

Evolution of GHGs 1985-2015



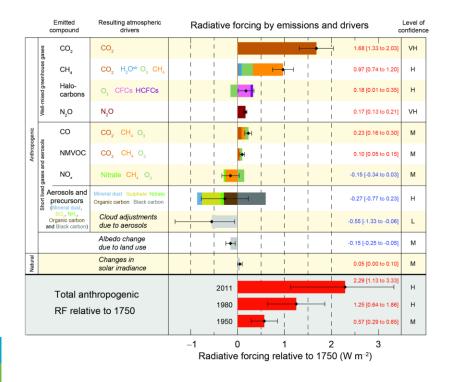
330 325 320 315 315 315 300 1985 1990 1995 2000 2005 2010 2015 Year

Carbon dioxide (CO₂)

Methane (CH₄)

Globally averaged mole fraction of CO_2 in the atmosphere reached the milestone of 400 parts per million for the first time in 2015 and surged again to new records in 2016 on the back of the very powerful El Niño event

Key features of the Paris agreement

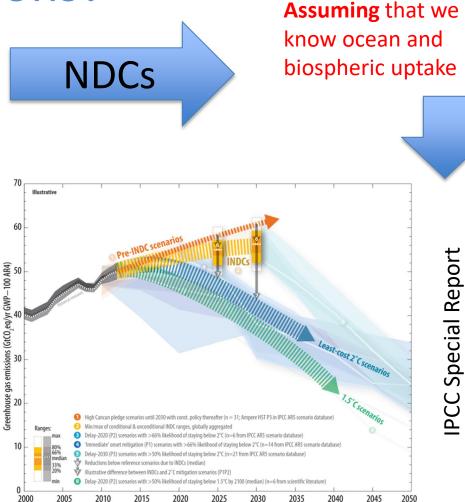

- New legal agreement for the post-2020 climate regime under the UNFCCC
- Addresses mitigation, adaptation and minimizing loss and damage
- Ambition to limit warming to well below 2 °C above preindustrial levels while pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels
- Addresses the means of implementation: finance, technology and capacity building
- Builds on Nationally Determined Contributions (NDCs) from Parties to the UNFCCC, a crucial step towards common objective
- Countries invited to update emission targets by 2020 and every five years
- Transparency and reporting on national progress

Paris Agreement – limit the warming below 2C (by limiting emissions)

Fundamental problem – it is what you **HAVE** in the atmosphere, not what you **PUT** in the atmosphere, that controls the temperature

Atmosphere 589 + 240 ±10 (average atmospheric increase: 4 (PgC yr-1)) Net land flux Net ocean flux 2.3 ±0.7 -atmosphe exchange = 60 + 20 60.7 weathering Ocean-gas (80 = biota Surface ocean Rivers 0.9 Vegetation 450-650 10 90 Permafrost Soils 1500-2400 ~1700 Dissolved Intermediate & deep sea 37,100 ossil fuel reserve Gas: 383-1135 +155 ±30 Oil: 173-264 Coal: 446-541 0.2 Fluxes: (PgC Stocks: (PgC Ocean floor surface sediments 1,750

Calculations are for year in 2011


WMO OMM

Human (9GtC in) – ocean (2.3GtC out) – biosphere(2.6GtC out)

How to get emissions?

"Bottom-up" measurements (IPCC reporting)

- Emissions reporting
- Reported and "verified" offsets
- Site-specific measurements
- "Top-down" measurements
 - Comprehensive atmospheric observation system
 - Ecosystem and ocean observations
 - Inverse modelling
- Combination of above

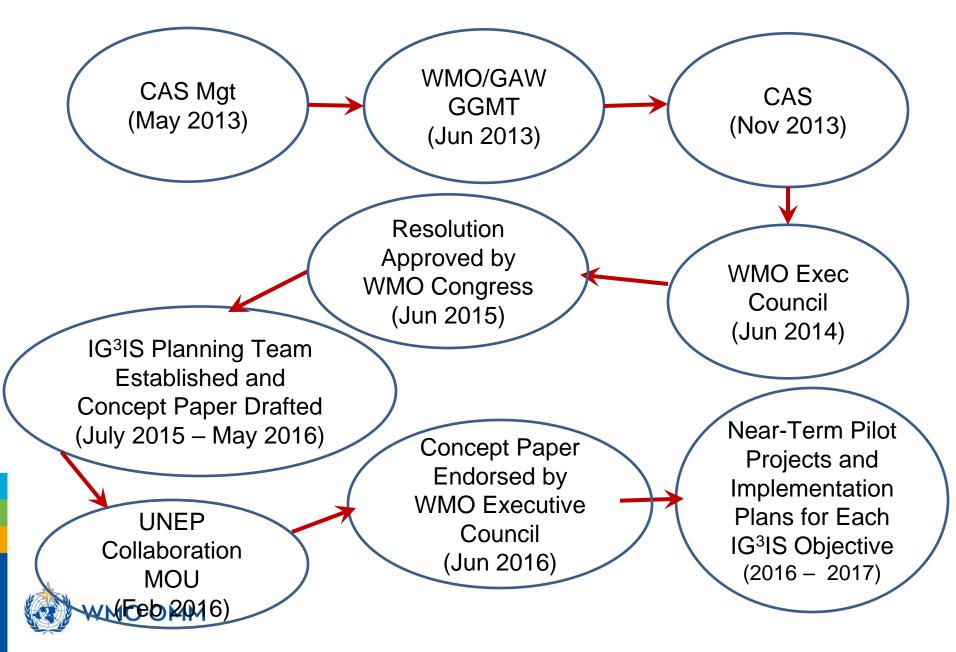
NDC are evaluated every 5 years -> are we on the right track? Where can we cut more? Are oceans and biosphere are working as expected?

The Integrated Global Greenhouse Gas Information System (IG³IS)

Goal: Support the success of post-COP21 actions of nations, subnational governments, and the private sector to reduce climatedisrupting GHG emissions through a sound-scientific, measurementbased approach that:

- reduces uncertainty of national emission inventory reporting,
- identifies large and additional emission reduction opportunities, and
- provides nations with timely and quantified guidance on progress towards their emission reduction strategies and pledges (e.g., NDCs)

Concept paper approved by EC-68



- IG³IS will serve as an international coordinating mechanism and establish and propagate consistent methods and standards.
- Diverse measurement and analysis approaches will fit within a common framework.
- Stakeholders are entrained from the beginning to ensure that information products meet user priorities and deliver on the foreseen value proposition.
- Success-criteria are that the information guides additional and valuable emission-reduction actions.
- IG³IS must mature in concert with evolution of technology and userneeds / policy.

IG³IS programmatic evolution within WMO

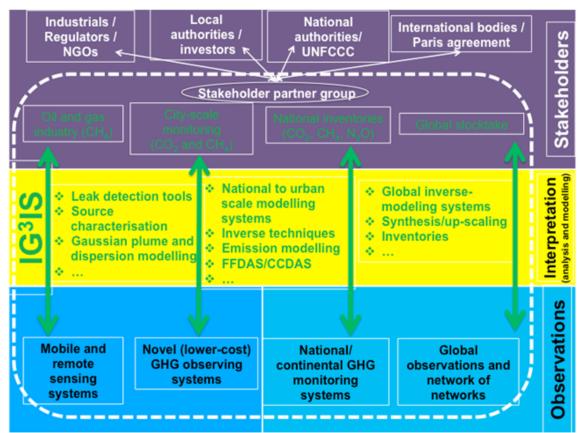
Near-term IG³IS Objectives (3-5 year horizon)

- 1. Reduce uncertainty of national emission inventory reporting to UNFCCC;
- 2. Locate and quantify previously unknown emission reduction opportunities such as fugitive methane emissions from industrial sources; and,
- 3. Provide subnational entities such as large urban source regions (megacities) with timely and quantified information on the amounts, trends and attribution by sector of their GHG emissions to evaluate and guide progress towards emission reduction goals.
- 4. Support of global stock taking

Cross-cutting activity on development of inverse modelling techniques

Annotated outline of the IG³IS Implementation Plan was presented at EC-69

ঠ wmo омм


IG³IS Implementation

IG³IS implementation is proceeding along two lines of activity:

- 1. The preparation of methodological guidelines that describe "good practice" use of atmospheric measurements for implementation under each objective area, and
- 2. The initiation of new projects and demonstrations that propagate and advance these good practice capabilities and build confidence in the value of IG³IS information with stakeholders.

Co-benefits of combined climate and air quality policies

Air Pollutant / GHG	Lifetime/Scale	Climate Impact	Health/Ecosystem Impacts	Lifetime in Atmosphere = days/weeks Impact Scale = local/regional
Carbon Dioxide (CO ₂)		1	\bigcirc	Lifetime in Atmosphere = years
Flourinated Gases (F-gases)		1	\oslash	Imapct Scale = global
Methane (CH ₄)		1		T Warming
Nitrogen Oxides (NO _x)		†↓		Cooling
Nitrous Oxides (N ₂ O)		1	\bigcirc	Human Health Impact
Particulate Matter (PM)		† ↓		Ecosystem Impact
Sulfur Dioxide (SO ₂)		Ļ		No direct impact on human
Tropsopheric Ozone (O ₃)		1		*No direct impact implies the substance in question either does not directly cause human
Volatile Organic Compounds (VOCs)/ Carbon Monoxide (CO)		1		health or ecosystem impacts or it does not go through a chemical process to create a substance that directly impact human health and ecosystems.

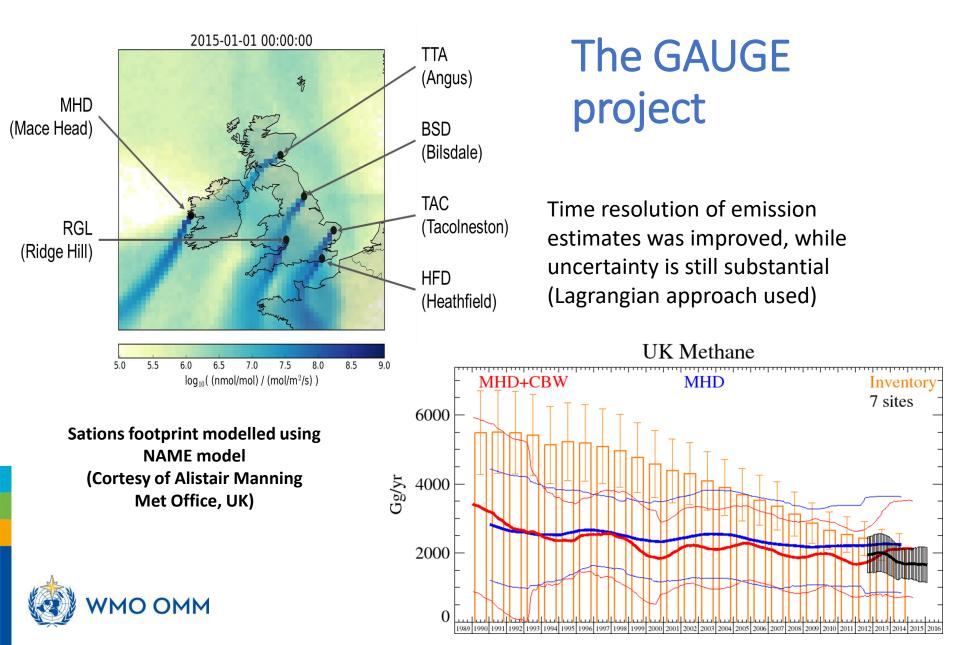
MO OMM

(from Melamed et al., 2017)

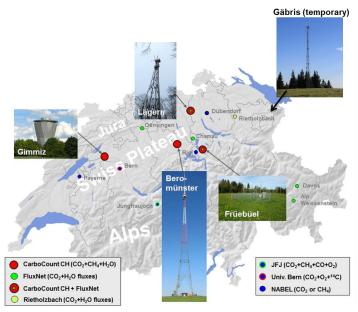
What sectors can be supported by IG³IS?

Mitigations	Main observations	Observations needed for sector attribution	Additional benefits
Transport and energy	CO ₂	¹⁴ C in CO ₂ CO, NOx	Air quality and health through co- emitted
Oil and gas emissions/ waste management	CH ₄	CH₄ isotopic composition Volatile Organic Compounds (VOC)	Regional air quality (agricultural production loss due to O ₃)
Agriculture/ land use	CH ₄ , N ₂ O	CH ₄ isotopic composition Volatile Organic Compounds (VOC) NOx	The same as above plus water quality

Adaptation measures:

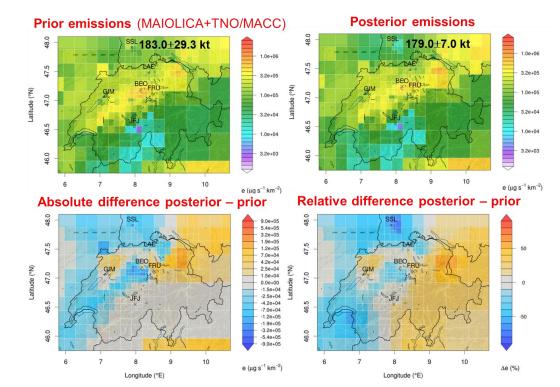

10 OMM

- Sustainable agricultural practices (with optimal use of fertilizers)
- Food security and development and development of pollution sustainable crops
- Minimization of impacts on human health


Objective 1: IG³IS in Support of National Inventory Preparation (lead authors Alistair Manning and Dominik Brunner)

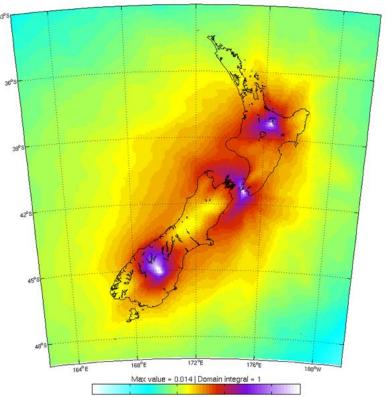
IG³IS best practice from UK

IG³IS best practice from Switzerland


New GHG measurement network established (project CarboCount-CH)

FLEXPART-COSMO (Empa, MeteoSwiss) – Largangian model with Bayesian inversion

CH₄ emissions in Switzerland 2013


Henne, S.,D Brunner et al.,2016 : Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling, Atmos. Chem. Phys., 16, 3683–3710, www.atmos-chem-phys.net/16/3683/2016/

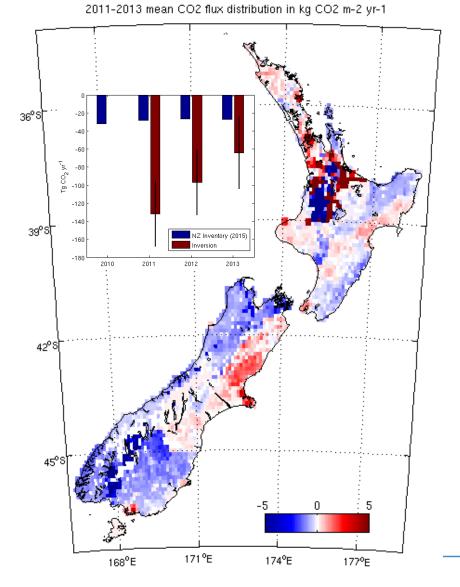
New Zealand "top-down" regional carbon programme

- NAME is used for the inverse modelling.
- Currently 3 observation sites contribute CO₂ data to the inverse model.
- Use ¹⁴C for sector attribution
- NIES Transfuture 5 observations are included when it is within the domain.
- Adding 2 new sites this year

Slide: courtesy of Brailsford Gordon, NIWA

1e-06

1e-05


731 day mean Boundary Layer footprint - BHD, LAU, RBM

(Steinkamp etal, 2017)

0.0001

0.001

Geographic Distribution of Inverse Flux Estimates

- Larger uptake than prior model or bottom up accounting, particularly in forested regions
- Differences to bottom up accounting partly due to differences between LULUCF and what the atmosphere 'sees'. These issues are still being resolved.

Slide: courtesy of Brailsford Gordon, NIWA

enhancing the benefits of New Zealand's natural resources

INTERGOVERNMENTAL PANEL ON Climate change

Our ref.: 5207-16/IPCC/P-44

To the Executive Heads of International and other Organizations

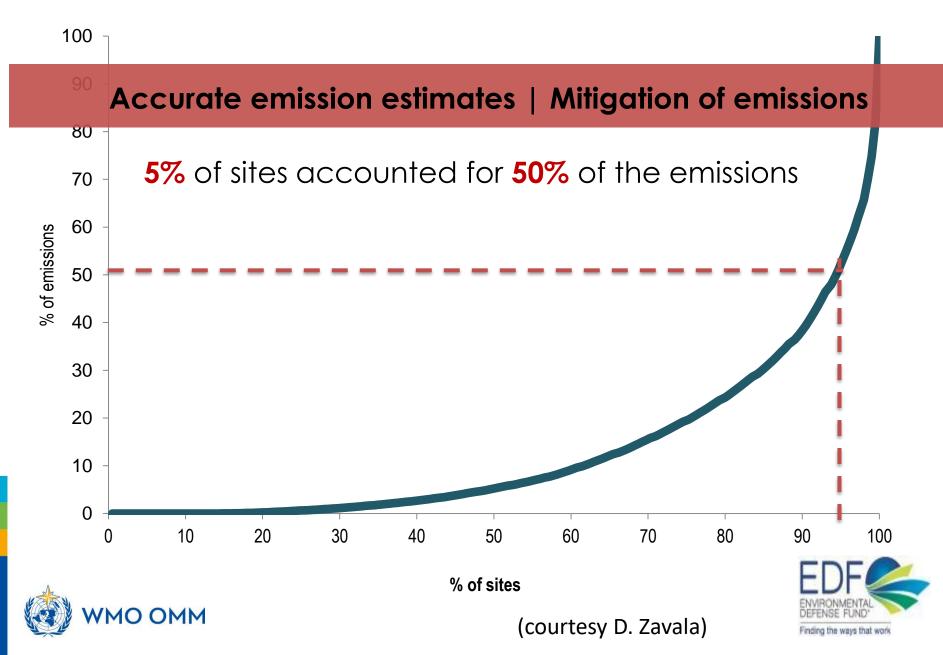
Geneva, 16 August 2016

Sir/Madam,

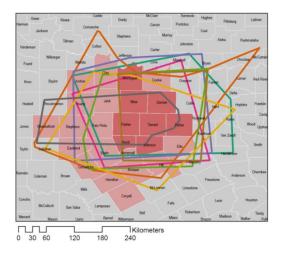
I am writing on behalf of the Chair of the Intergovernmental Panel on Climate Change (IPCC) on the subject of the Forty-Fourth Session of the IPCC (IPCC-44) scheduled to take place at the United Nations Conference Centre, United Nations ESCAP, Rajdamnern Nok Avenue, Bangkok 10200, Thailand, from 17 to 20 October 2016.....

The main agenda items of the Forty-Fourth Session of the IPCC will be to consider the outline for the IPCC Special Report on the impacts of global warming of 1.5 °C above preindustrial levels and related global greenhouse gas emission pathways, and to consider the outline of the Methodology Report(s) to refine the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The Panel will also address other items that require consideration and decision by the Panel.

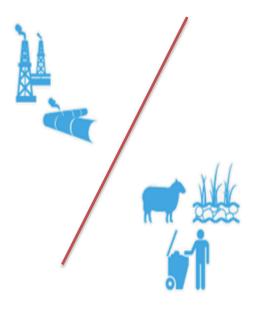
Objective 2: Detect and Quantify Anthropogenic Methane Emissions (*lead authors Daniel Zavala-Araiza, Gabrielle Petron, Rod Robinson*)

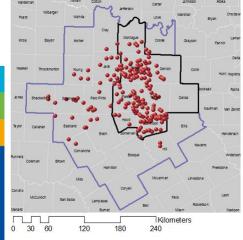


EDF Coordinated Studies US Natural Gas Supply Chain Methane Emissions


4

Lessons learned: Super-emitters

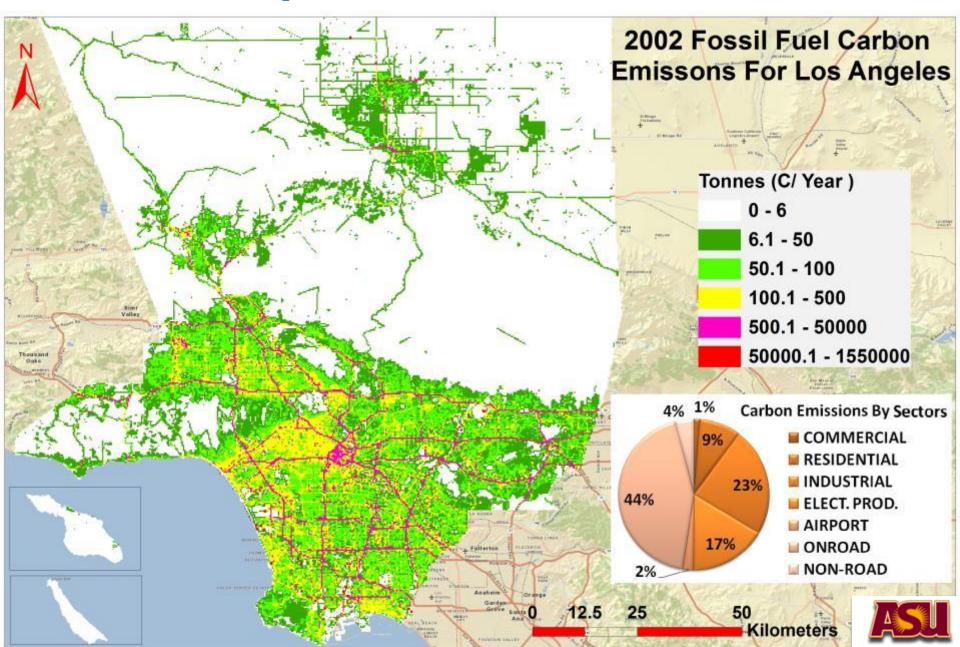



Additional Lessons learned

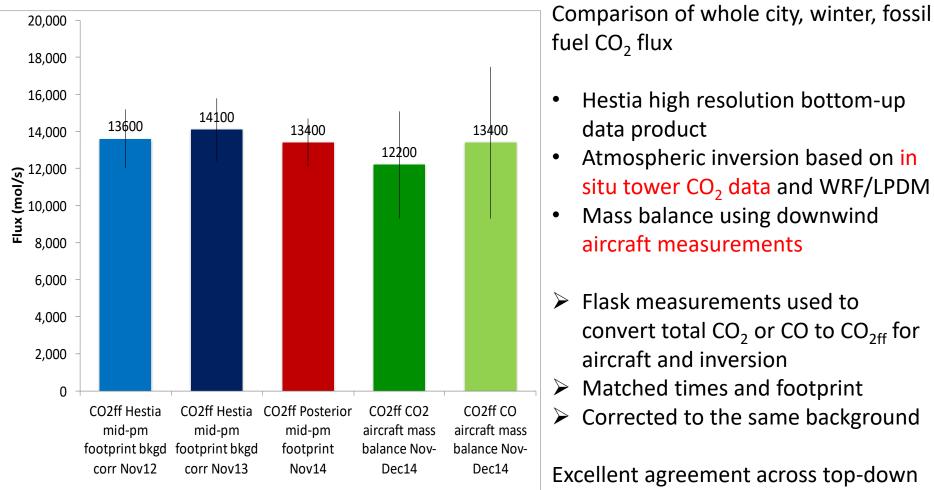
Multiple flights

Attribution techniques

Accurate facility counts



Objective 3: IG³IS in Support of City-Scale Mitigation Efforts (lead authors Felix Vogel, Jocelyn Turnbull)



The Hestia Project:

Quantifies all fossil fuel CO₂ emissions at building and street scale

Indianapolis CO₂ff flux comparison

Turnbull et al, ICDC10 presentation

13,300 mols/s ± 6%

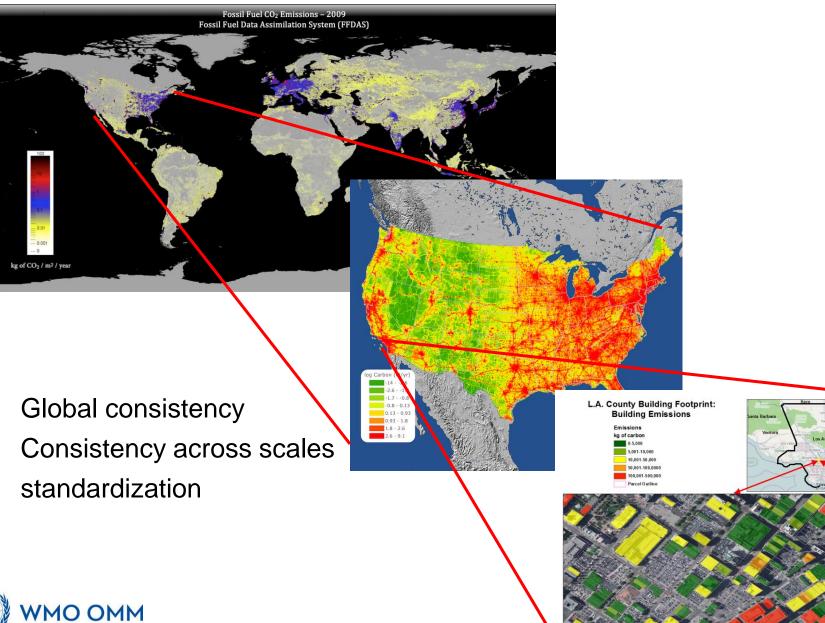
and bottom-up methods

NEP	

Complexity of solution

Level of sophistication of urban stakeholder needs

	Identify major emitters and anomaly detection	Quantification of total GHG emissions	Assessment of GHG emissions per sector	Tracking annual and long-term emission changes	Understand short-term emission changes and spatial patterns	Process understanding of emissions and tracking of mitigation impacts
	Inventory validation (A1)	Inventory or emission model (A2)	Sector-specific inventory or emission model (A3)	Continuously updated inventory or emission model (A4)	Temporally and spatially disaggregated inventory or emission model (A5)	Process-based emission model using real-time emission data
	Mobile surveys (B1)	Mass-balance (B2) Radon tracer method (B3)	Multi-tracer ratio observations (B4)	Radon tracer method (B5) Multi-tracer observations (B6)	Mobile surveys (B7) <u>Repeated mass-</u> <u>balance</u>	<u>Dedicated field</u> <u>campaigns (</u>
	Remote sensing (C1)	DAS using short- term observations (C2)	DAS using dense observations(C3) <u>DAS using multi-</u> <u>species data</u>	DAS using long-term observations (C4)	DAS using dense observations (C5)	FFDAS DAS using multi- species


Demonstrated skills Theoretically tested skills Future potential skills

DAS = data assimilation system

(courtesy F. Vogel)

"Nesting" – from the planet to a building

Instead of conclusions

- IG³IS is a community initiative, hence all contributions (documentation of working methods) are welcome
- IG³IS Implementation Plan will be a living document
- More pilot and demonstration projects following the same guiding principles are needed to demonstrate the full potential of the system

WEATHER CLIMATE WATER TEMPS CLIMAT EAU

WMO OMM

World Meteorological Organization Organisation météorologique mondiale