The Philippine Contribution to the Biodiversity Observation Network (PhilBON): The Palanan Permanent Forest Dynamics Plot, Lessons Learned & Opportunities

Perry S. Ong, Ph. D.

Estimated death toll soars as path of destruction leaves many parts of Philippines inaccessible to government and aid officials

C This article is 3 years old

< 12,875 Kate Hodal in Manila, and agencies

y @katehodal

Sunday 10 November 2013 05.55 GMT

https://www.thegu ardian.com/world/ 2013/nov/10/typho on-haiyanthousands-deadphilippines

At least 10,000 people are thought to have died in the central Philippine province of Leyte after Typhoon Haiyan, one of the strongest storms ever to make landfall, lashed the area, swallowing coastal towns, a senior police official said early on Sunday morning.

LIBRARY NATIONAL OF AUSTRALIA

Page 3 /

typhoon phillipines

Q

Barrier Miner (Broken Hill, NSW : 1888 - 1954) /

Q

Q

C

๖

Adv

Newspapers: / Browse /

1

C

\$

A Fix this text 13 Why are there text errors? A In: SECOND EDITION TYPHOON AND TIDAL WAVE 0 IN THE PHILLIPINES. 7000 Lives Lost. MAIL advices, brought by the steamer Gaelic from Chinese and other ports in the Far East, contain details of the fearful destruction wrought in the Phillipine Islands by the typhoon and tidal wave during October. It is estimated that 400 Europeans and 6000 natives lost their lives, many being drowned by the rush of water, while others were Ł

killed by the violence of the wind. Several towns have been swept or blown away. The hurricane first struck the Bay of Santa Paula, and devastated the district lying to the south of it. No communication with the neighborhood was possible for two days. The hurricane reached Leyte on October 12, and striking Tacloban, the capital, with terrific force, reduced it to ruins in less than half an hour. The bodies of 126 Europeans

have been recovered from the fallen buildings. Four hundred natives were buried in the ruins. A score of small trading vessels

completely recover in Cannes, the air of which place has always exerced a most Before honeficial effect on his system Jeaving Hawarden Mr Gladatone was seen by Dr. Carter, of Liverpool, in consultation, and the opinion of his medical advisers was that fils general condition was wonderful in a man of nearly 88 years of age '

Wed 12 Jan 1898

TYPHOON AND TIDAL WAVE IN THE PHILLIPINES.

7000 Lives Lost. Marr. advises, brought by the steamer Gaelic from Chinore and other ports in the Far Bast, contain details of the featful destruction wrought in the Phillipine Islands by the typhoon and tidal wave during October. It is estimated that 400 Kuropeans and 6000 mative lost their lives, many being drowned by the rush of water, while others were killed by the violence of the wind. Esveral towne have been swept or blown sway. The hurricase first struck the Bay of Panta Pouls, and devastated the district lying to the south of it No communication with the neighborhood was possible for two days. The hurries ne reached Leyte on October 12, and striking Taolobau, the copies, with servific force, reduced it to ruins in less than half an hour. The bodies of 136 Europeans have been recovered from the fallen baild. ings. Four hundred natives were buried in the rains. A score of small trading vessels and two Sydney traders were wrecked on the couthern coast, and their crows drowned. At Gamos the sea swept inland for a mile, At Games the sea swept inland for a mile, destraying property worth seven million destars, and many natives lost their lives. The Government prison at Tacloban was wrooked, and of the 200 rebels therein half succeeded in making their scope. The term of Hermin was swept away by flood, and its 5000 inhabitants are missing. The small station of Weers, near Loog, is also game, while in Loog itself only three houses are lefs standing. Thousands of natives are reasing about the devastated province reaking food and medical attendance. In many cases the corpers were mutilated as though they had fallen in battle, and the expressions of their faces were most aroniting.

hades of tas, at H. H. Hart's."

channel. Ecores of nies worked in short shifts by torchlight, and the spectators raiged a cheer when it seemed that the stream had been diverted. And at once the roadway began to break up with a tramendous noise, and in an instant the Stonebridge Rock gas main wasswaltowed up in the gulf. The workers fled, It was at first feared that some had been awept into the terrent, but happily this was not the case. Mr. Tinsley then had a trench cut so as to divert the course of the stream, and this work was partly accomplished by noon. The scone of the ostastrophy suggests the effects of an earthquaks. One large chasm swallowed up IO yards of rails and four waggons, while there seemed likely to topple ever. The ground all about the neighborhood had a disturbed appearance, and the police were basy keeping the anziens crowds out of danger, while the neighboring cottages of the workprople were varated, the dwellers cooking refuge with friends in more mfe ocalities. Mr. Tinaley and others, who night, had worked all through the efforta continued their mext when they had help from Mr. Paul los, manager of the White Mess Colliery Company, and Mr. Davies, son of Mr. Heary Davise, of Southport, the principal owner. The latter walked in a blinding enowstarm at 7 o'clock in the morning to the score of the disaster. It may be mentioned that the It. coal of the old mine crops out under the ed of the Tawd, and nearly 30 years ago everal colliers were drowmed through a lood in the shaft sunk to work the coal here. Lord Lathom's pits stopped working on Dec. 1 on account of the rush of gas from the flooded mines.

12 October 1897, reported 12 Jan 1898

used to divert the stream into its usual

TYPHOON AND TIDAL WAVE IN THE PHILLIPINES.

AN ARIZONA TRAIN WRECK.

THE San Francisco Chronicle gives particulars of a terrible railway accident which happened mear Los Angeles on 20th Novem-The regular west-bound over and DOP. freight train, consisting of 31 cars, all but one heavily leaded, and drawn by two heavy engines, loft Williams about 4 c'olock and started up the heavy grade just west of Los Angelos. It is three miles be the summit, and the heavy train totled slowly up the slope, and reached the top without accident. Gentlemen's lace boots, in the fashionable The train crossed the divide and started fown the other side. The air brahes

LEAVING THE HOS The following letter, wri son himself, which we that a really miraoule effected in his ones. reads as follows :---

"King-st, Feb 4th. " Measra Gould, Some, a

" Dear Sizs,-I have b for many years from cos At 1 and constipution. quite jellow, and I at appetite, depression of was under three of t physicians, and was told femioual duties and go is I did, going to Walks malia. I was five week worse and came out to d of the Almighty I was r Gould's Pills. and, tak menced to improve in a I am quite recovered. good, gentle in their act griping. It seems stra

osuld not help himself, Calomel, &c.-I took, o relief. hince taking Ge never be without them. Riemod.

Such ailments as Com ness after Enting, Dyop Eidney Treubics, Del Waaknass, &c., &c., ar Fills, and they are also and sallow complexion instition, boart palpital breath after alight ezert side, and when used aft been eaten they take aw agrocable feeling.

http://trove.nla.gov.au/newspaper/article/44204307?searchTerm=typhoon+phillipines&searchLimits

15,000 DIE IN **PHILIPPINE STORM**

That 15,000 persons were probably killed and wounded in a typhoon that swept the Philippine Islands last Tuesday was reported yesterday in cable dispatches to the Bureau of Insular Affairs.

The typhoon swept the Visayas and is said to have practically destroyed Tacloban, the capital of Leyte, and to have wrought enormous damage and loss of life at Capiz, the capital of the province of Capiz.

1912

1912

Tacloban has a population of 12,000. Capiz has a population of over 20,000. Capiz is the terminal of the railroad from Iloilo. It is a most important sugar port.

Aid Rushed to Scene.

The first news of the catastrophe came in a dispatch from the governor general of the Philippines. No figures of the dead or injured were given, but it was stated that probably half the population of the two cities had been lost.

The governor general sent his dispatch on Thursday. He informed the department that he was rushing a shipload of food, clothing, and all available medical supplies to Tacloban. All telegraphic communication has been destroyed, and it is impossible to get other than vague reports of the extent of the disaster. That Tacloban has suffered an enormous loss of life is believed to be certain.

Following the receipt of the dispatch announcing the heavy casualties in the Visayas, the Red Cross prepared to rush a relief fund to the governor general

http://chroniclingamerica.loc.gov/lccn/sn83 045433/1912-11-30/ed-1/seq-1/#

Figure 1: Global distribution of all cyclones between 1950-2000 [1]. In contrast to the Philippines, Borneo has not witnessed a cyclone in 50 years.

Supplementary material for Moritz et al., 2017, Functional preservation and variation in the cone opsin genes of nocturnal tarsiers, Phil. Trans. R. Soc. B. doi: 10.1098/rstb.2016.0075

This link provides detailed information about original data.

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00834

This link is to an interactive map tools for downloading cyclone/hurricane tracks over various locations/time periods.

https://coast.noaa.gov/hurricanes/?redirect=301ocm

This is the link to the International Best Track Archive for Climate Stewardship (IBTrACS). Only data from the WMO RSMCs are provided by this subset.

https://www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data

For data from other agencies (e.g., JTWC, CMA, etc.), access the complete IBTrACS dataset.

https://www.ncdc.noaa.gov/ibtracs/index.php?name=status

Figure 1. The 16-ha Palanan Forest Dynamics Plot and the surrounding 273-ha Special Use Zone within the Northern Sierra Madre Natural Park (NSMNP). Philippine Outline Map from Map Atlas (<u>www.worldatlas.com</u>). Location of NSMNP map from Biodiversity Conservation in the Northern Sierra Madre Natural Park by Marites Gatan Balbas, Mabuwaya Foundation Inc.

Palanan Forest Dynamics Plot

70 – 125 m asl
340 cm annual precipitation
clay loam soils

Summary Statistics of the Palanan PFDP

Plot Size: 16 ha

Year Initiated: 1994 (8-ha); 1998 (16-ha)

Recensus: 2004 (Supertyphoon Imbudo (Category 4) hit in July 2003, before recensus) 2010 (Supertyphoon Meji (Category 5) hit in October 2010, after recensus) 2016 (Supertyphoon Haima (Category 5) hit in October 2016, after recensus)

	1998	2004	2010	2016
Species :	308	322	323	331
Trees:	61660	77586	74606	82788*
****	walatad Oatabar	2016 number		

*recensus completed October 2016, numbers under review

Mortality Rates Growth Rates Colonization Rates Impact of Typhoons

Journal of Vegetation Science 27 (2016) 133-143

Dynamic response of a Philippine dipterocarp forest to typhoon disturbance

Sandra L. Yap, Stuart J. Davies & Richard Condit

Keywords

Biomass; Dipterocarp forest; Forest dynamics; Forest resilience; Mortality and recruitment; Regeneration; Tree demography; Typhoon disturbance

Nomenclature

Co et al. (2006)

Received 5 August 2014 Accepted 5 February 2015 Co-ordinating Editor: Kerry Woods

Yap, S.L. (slimyap@gmail.com)¹, Davies, S.J. (corresponding author, DaviesS@si.edu)², Condit, R. (conditr@gmail.com)³

¹Institute of Biology, University of the Philippines, Diliman, Quezon City, PH 1101, Philippines;

Abstract

Questions: Natural hazards can wreak catastrophic damage to forest ecosystems. Here, the effects of typhoon disturbance on forest structure and demography of the 16-ha Palanan Forest Dynamics Plot in the northeast Philippines were examined by comparing census intervals with (1998–2004) and without (2004–2010) a strong typhoon. Category 4 Typhoon Imbudo, with wind gusts exceeding 210 kph, hit Palanan in July 2003. In this study, we ask: (1) was there an effect of the typhoon on stand structure and biomass; (2) was there an impact on species diversity; (3) did annual mortality, growth and recruitment change significantly between typhoon and non-typhoon periods; and (4) did the typhoon's impact vary with local topography, from leeward to windward sides of a ridge?

Location: Lowland mixed dipterocarp forest, Palanan, Isabela, Philippines.

Methods: Census data from 1998, 2004 and 2010 for all trees ≥ 1 cm DBH in a 16-ha permanent plot in Palanan, Isabela, were used to assess tree demography. Recorded in the census were species identification and measurements of DBH and tree locations. Biomass was calculated from published allometry.

Ecosystems

September 2016, Volume 19, <u>Issue 6</u>, pp 1013-1022

Temporal Changes in Tree Species and Trait Composition in a Cyclone-prone Pacific Dipterocarp Forest

Carla C. Monoy 🖂 , Kyle W. Tomlinson, Yoshiko Iida, Nathan G. Swenson, J. W. Ferry Slik

Abstract

Our understanding of the effects of tropical cyclones on species composition and dynamics of forest communities is mainly derived from studies that have considered single cyclonic events. Here we examined changes in the tree species and functional trait composition in an 8-ha Dipterocarp forest at Palanan in the northeastern Philippines that is subject to a high frequency of cyclonic disturbance (1-4 cyclones annually). The plot has been censused four times over a 16-year interval allowing us to consider the medium-term forest dynamics in response to repeated cyclones. We hypothesized that as the forest community in Palanan has been selected under frequent disturbance by cyclones, it should show little functional change across the census intervals. We analyzed changes in demography, species composition, and communityweighted functional traits (specific leaf area, leaf area, wood density, and specific growth rate) across the censuses and compared these against cyclone intensities during the census intervals. Demographic changes across census years suggest that the community responded to cyclonic disturbances through substantial turnover in the small- and medium-size individuals, and that there has been an increase in plot-level stem density and basal area across the measured period. Trait compositional changes from 1994 to 2010 were mostly small, but indicate a shift towards species with larger leaves and faster growth rates-traits that are associated with fast recovery after disturbance. These changes all coincide with a large intense cyclone between the second and third censuses, suggesting that cyclone strength, more than cyclone frequency, affects this forest.

The group currently encompasses

- Australia
- China
- 🕨 Japan
- South Korea
- Malaysia
- Philippines
- Taiwan
- Thailand

EAP Regional Group. Chair: Hiroyuki Muraoka, Gifu University, Japan

https://www.ilternet.edu/?q=content/networks-and-regions

Fig. 1 Map of the CTFS-ForestGEO network illustrating its representation of bioclimatic, edaphic, and topographic conditions globally. Site numbers correspond to ID# in Table 2. Shading indicates how well the network of sites represents the suite of environmental factors included in the analysis; light-colored areas are well-represented by the network, while dark colored areas are poorly represented. Stippling covers nonforest areas. The analysis is described in Appendix S1.

Science 30 Jun 2017: Vol. 356, Issue 6345, pp. 1389-1392 DOI: 10.1126/science.aam5678

FOREST ECOLOGY

Plant diversity increases with the strength of negative density dependence at the global scale

Joseph A. LaManna,^{1,2*} Scott A. Mangan,² Alfonso Alonso,³ Norman A. Bourg,^{4,5} Warren Y. Brockelman,^{6,7} Sarayudh Bunyavejchewin,⁸ Li-Wan Chang,⁹ Jyh-Min Chiang,¹⁰ George B. Chuyong,¹¹ Keith Clay,¹² Richard Condit,¹³ Susan Cordell,¹⁴ Stuart J. Davies,^{15,16} Tucker J. Furniss,¹⁷ Christian P. Giardina,¹⁴ I. A. U. Nimal Gunatilleke,¹⁸ C. V. Savitri Gunatilleke,¹⁸ Fangliang He,^{19,20} Robert W. Howe,²¹ Stephen P. Hubbell,²² Chang-Fu Hsieh,²³ Faith M. Inman-Narahari,¹⁴ David Janík,²⁴ Daniel J. Johnson,²⁵ David Kenfack,^{15,16} Lisa Korte,³ Kamil Král,²⁴ Andrew J. Larson,²⁶ James A. Lutz,¹⁷ Sean M. McMahon,^{27,28} William J. McShea,⁴ Hervé R. Memiaghe,²⁹ Anuttara Nathalang,⁶ Vojtech Novotny,^{30,31,32} Perry S. Ong,³³ David A. Orwig,³⁴ Rebecca Ostertag,³⁵ Geoffrey G. Parker,²⁸ Richard P. Phillips,¹² Lawren Sack,²² I-Fang Sun,³⁶ J. Sebastián Tello,³⁷ Duncan W. Thomas,³⁸ Benjamin L. Turner,¹³ Dilys M. Vela Díaz,² Tomáš Vrška,²⁴ George D. Weiblen,³⁹ Amy Wolf,^{21,40}

Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.

Community Structure and Habitat Use of Fruit Bats in Tropical Lowland Forests, Palanan, Isabela

Capture and processing of bats in the field

Figure 2. Field activities include: capturing of bats through misnets (A), measuring of morphometrics (B), assessing reproductive status of bats (C), collecting biopsy wing punches (D), tagging of bats using ballchains (E nd F), collection of fecal and pollen samples (G), and releasing of processed bats (H).

- Characterized the three habitat types based on species diversity, tree density, tree height, crown cover etc
- Conducted phenology in each of the habitat type
- A total of 10 species of fruit bats and 8 species of insectivorous bats were recorded

Fruit bats recorded within the six study sites. Frugivores (a). Ptenochirus jagori, (b). Cynopterus brachyotis, (c). Haplonycteris fisheri, (d). Pteropus vampyrus, (e). Desmalopex leucopterus, and (f). Acerodon jubatus. Nectarivores (g). Rousettus amplexicaudatus, (h). Macroglossus minimus, (i). Eonycteris robusta and (j). Eonycteris spelaea (ES).

Partial summary of marked and recaptured fruit bats for April and May 2017 in the lowland forest of Palanan, Isabela

	Total	Total		
Species	Captured	Tagged	Total Recap	% recap
Ptenochirus jagori	52	41	12	29.27
Cynopterus brachyotis	28	21	7	33.33
Macroglossus minimus	9	9	0	0.00
Haplonycteris fischeri	25	25 20		30.00
Eonycteris robusta	13	11	0	0.00
Rousettus amplexicaudatus	31	31	0	0.00
Eonycteris spelaea	3	1	0	0.00
Desmalopex leucopterus	7	5	1	20.00
Total	168	139	26	

Partial summary of marked and recaptured fruit bats for April and May 2017 in the mangrove forest of Palanan and Divilacan, Isabela

	Total	Total	Total	
Species	Captured	Tagged	Recap	% recap
Ptenochirus jagori	18	6	3	50.0
Cynopterus brachyotis	10	10	0	0.0
Macroglossus minimus	26	32	3	9.0
Eonycteris robusta	7	5	2	40.0
Rousettus				
amplexicaudatus	1	1	0	0.0
Total	62	54	8	

Pollen Resources of Phytophagous Bats in the Tropical lowland Forests Palanan, Isabela

Bat swab collections (April 2016 – June 2017) Summary

	Apr- 16	May -16	Jun- 16	Aug -16	Sep -16	Oct- 16	Nov -16	Dec -16	Feb- 17	Mar- 17	Apr- 17	May -17	Jun- 17	TOTAL
Ptenochirus jagori	147	68	54	66	108	84	60	93	17	37	57	14	10	815
Cynopterus jagori	87	33	64	68	69	39	39	44	7	2	27	30	11	520
Macroglossus minimus	34	17	10	17	20	25	14	17	12	6	40	29	15	256
Haplonycteris fischeri	22	13	5	7	26	11	18	12	3	7	23	20	6	173
Eonycteris robusta	33	26	60	41	37	19	6	1	4	2	27	7	4	267
Rousettus amplixicaudat us	4	11	126	71	29	78	48	8	10	2	29	8	87	511
Eonycteris spelaea	24	6	8	1	9	6	1	-	-	-	1	3	2	61
Desmalopex leucopterus	1	5	10	7	8	9	1	5	4	2	8	8	2	70
Acerodon jubatus	-	-	-	-	1	-	-	-	-	-	-	-	-	1
Pteropus vampyrus	-	-	-	-	-	-	-	1	-	-	-	-	-	1
TOTAL	352	179	337	278	307	271	187	181	57	58	212	119	137	2675

Positive readings of bat swab samples

(April 2016 to March 2017)

	April 2016	May 2016	June 2016	Augu st 2016	Septe mber 2016	Octob er 2016	Novem ber 2016	Decem ber 2016	Februa ry 2017	March 2017	Total
Eonycteris robusta	15	23	11	35	26	12	3	1	3	2	131
Ptenochirus jagori	23	38	12	57	55	62	33	13	8	14	315
Desmalopex leucopterus		3	2	7	7	9	2		3		33
Haplonycteris fischeri	6	4	3	6	12	8	16	7	3	6	71
Rousettus amplexicaudatu s		5	57	58	11	38	33	1	1	1	205
Macroglossus minimus	3	11	2	11	12	8	11	7	10	7	82
Cynopterus brachyotis	17	22	19	55	24	21	24	10	7		199
Eonycteris spelaea	3	1	4	1	9	6	1				25
Acerodon jubatus					1						1
Total number (+) readings	67	107	110	230	157	164	123	39	35	30	1062

Pollen Types from Bat Swabs

(A-B) Anacardiaceae (C) Leguminaceae/Fabaceae (D) Poaceae/Pandanaceae type (E-F) Anacardiaceae (G-J) Euphorbiaceae (K-L) Liliaceae type (M) Acanthaceae (N) Arecaceae (O) Moraceae (P-S) Unidentified.

Phenology monitoring 110 species, 42 families

Creation	Number	F amily	2016									2017					
Species	Number	raininy		MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
S. klemmei	1	Actinidiaceae															
Semecarpus sp. big leaf	2	Anacardiaceae															
E. grandifolium	3	Annonaceae]														
G. elmerii	4	Annonaceae															
H. lanceolata	5	Annonaceae															
H. sp. incert B	6	Annonaceae															
T. pandacaqui	7	Apocynaceae															
V. globosa	8	Apocynaceae															
A. whitfordii	9	Arecaceae															
C. cumingii	10	Arecaceae															
C. rumphiana	11	Arecaceae															
N. fruticans	12	Arecaceae															
O. decipiens	13	Arecaceae]														
P. insignis	14	Arecaceae															
P. maculata	15	Arecaceae															
G. calleryanum	16	Cardiopteridaceae															
M. corymbosa	17	Chrysobalanaceae															
G. cumingiana	18	Clusiaceae															
G. rubra	19	Clusiaceae															
K. lanceolata	20	Clusiaceae]														

Diet Analysis of Fruit Bats Using Metagenomics to Assess Plant Dispersal in the Tropical Lowland Forests of Palanan, Isabela Summary of Total Fecal Samples of Eight Fruit Bat Species collected from April 2016 to May 2017 in the Tropical Lowland Forests of Palanan, Isabela.

	TOTAL NUMBER OF FECAL SAMPLES COLLECTED													
FRUIT BAT SPECIES				Year-1	L (UP-C)VPAA)				P	TO			
					20	TAL								
	APR	MA Y	JUL	AU G	SEP T	ОСТ	NO V	DEC	FEB	MA R	APR	MA Y		
Ptenochirus jagori	45	16	5	13	16	18	15	44	8	21	21	1	223	
Cynopterus brachyotis	26	4	10	9	8	11	10	18	3	2	7	6	114	
Desmalopex leucopterus	0	1	2	2	2	0	0	0	0	1	1	1	10	
Haplonycteris fischeri	4	3	1	1	5	0	2	5	0	5	4	3	33	
Rousettus amplexicaudatus	2	5	14	13	4	19	12	1	1	0	26	0	97	
Macroglossus minimus	9	1	3	2	9	12	10	4	1	0	2	3	56	
Eonycteris robusta	8	5	7	8	12	7	0	0	3	2	6	6	64	
Eonycteris spelaea	7	0	3	0	2	4	0	0	0	0	0	2	18	
TOTAL	10 1	35	45	48	58	71	49	72	16	31	67	22	615	

Summary of Total Fecal Samples <u>with Seeds</u> of Eight Fruit Bat Species collected from April 2016 to May 2017 in the Tropical Lowland Forests of Palanan, Isabela.

		ΤΟΤΑ		MBER	OF FI	ECAL S	SAMP	LES <u>W</u>	ITH S	EEDS	COLLE	CTED	
FRUIT BAT SPECIES				Year-1	. (UP-C)VPAA)				P	ΟT		
				20		OTAL							
	APR	MA Y	JUL	AU G	SEP T	ОСТ	NO V	DEC	FEB	MA R	APR	MA Y	
Ptenochirus jagori	5	10	3	1	2	3	4	12	4	9	4	1	58
Cynopterus brachyotis	0	4	2	3	1	0	4	5	2	1	2	4	28
Desmalopex leucopterus	0	0	1	1	1	1	0	0	0	0	0	0	4
Haplonycteris fischeri	0	0	0	0	0	0	0	3	0	1	0	0	4
Rousettus amplexicaudatus	0	1	1	1	0	1	0	0	0	0	7	0	11
Macroglossus minimus	0	0	0	0	0	0	1	1	0	0	0	0	2
Eonycteris robusta	0	1	0	1	0	0	0	0	0	0	0	0	2
Eonycteris spelaea	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	5	16	7	7	4	5	9	21	6	11	13	5	109

Status of Seed Traps collected and processed April 2016-May 2017

MONTH COLLECTED	REMARKS	SORTED BY			
APRIL 2016	Completely sorted; not yet Identified	Medeva Jay Busaing (former RA)			
MAY 2016	Completely sorted; some Identified	Karen Mae R. Lego (URA-I)			
JUNE 2016	Completely sorted; not yet Identified	(hired Herbarium Aides)			
AUGUST 2016	Completely sorted; not yet Identified	(hired Herbarium Aides)			
OCTOBER 2016	Partially sorted; not yet identified	(hired Herbarium Aides)			
NOVEMBER 2016	Unsorted and not yet identified	N/A			
DECEMBER 2016	Completely sorted; not yet Identified	(hired Herbarium Aides)			
JANUARY 2017	Completely sorted; not yet Identified	(hired Herbarium Aides)			
FEBRUARY 2017	Completely sorted; not yet Identified	(hired Herbarium Aides)			
MARCH 2017	Unsorted and not yet identified	N/A			
APRIL 2017	Unsorted and not yet identified	N/A			
TOTAL	7 completely sorted; 1 partially identified	sorted; 3 unsorted; most not yet			

Random placement of the seed traps locations in Palanan Forest Dynamic Plot (PFDP) along with the tree species around each traps (Total seed trap = 100).

Expected Outputs

PUBLICATION

- At least six (6) Thomson-Reuters- or Scopus Indexed Journals
- 1 Field Guide to the Pollens from Batpollinated plants of Tropical Lowland Evergreen Forests
- 1 Field Guide to Bat-dispersed seeds of Tropical Lowland Evergreen Forests

PEOPLE

Capability building on Long Term Ecological Research:

- Post graduate and undergraduate students
- Faculty and Researchers

PLACES

Establishment of FERN (Forest Ecological Research Network) with the Palanan Permanent Forest Dynamocs Plot (PFDP) as the center of Long Term Ecological Research in the country. Currently part of the Smithsonian Institution-Center for Tropical Forest Science (SI-CTFS) as well as the International Long Term Ecological Research Network (ILTERnet)

POLICY

- Explore the development of a model for Research Toursim
- At least 1 National Workshop on Long Term Ecological Research on Tropical Lowland Evergreen Forest

• Palanan, Isabela

Philippine LTER Sites (ILTER)

PhiLTERNet Sites (UP Biology) First Gen Hydro Power Corporation Pantabangan Forest Dynamics Plot, Nueva Ecija

PhiLTERNet Sites (UP Biology) Holcim Biodiversity Action Plan

PhiLTERNet Sites (UP Biology) Energy Development Corporation Biodiversity Conservation and Monitoring Program

PhiLTERNet Sites (UP Biology) UP-DENR-PEFI Philippine Eagle Project

PhiLTERNet Sites (UP Biology) Various Partners

Biodiversity Assessed and Monitored

- Species Assemblages and Abundance
 - Plant
 - Mammals
 - Birds
- Ecosystems
 - Terrestrial (12 forest formations)
 - Freshwater
 - Marine
- Ecosystem services
 - Pollination
 - Seed Dispersal
 - Productivity (Fish)
 - Resilience (recovery from catastrophic disturbances)

Lessons Learned

- Biodiversity (and ecosystem services) can only be observed in the field! Nothing can replace field work.
- Doing fieldwork is not easy. It is hard work and requires sacrifices. Needs a team of dedicated field staff.
- Resources badly needed to collect other long term data to better understand how biodiversity is maintained and how ecosystem provides services
- Long term research needs long term support and resoruces to ensure continuity and getting comprehensive understanding of systems and processes
- Local Issues, Global Implications International Cooperation

Opportunities

- Historical data should be included in analysis (models to make accurate hindcasts to increase reliability of forecasts)
- Resources should be equally allocated to field work and data processing
- Advances in Technology require changes in mindsets on how biodiversity and ecosystem services can be understood
- Data integration and analysis of different domains (e.g., health, environment –green, blue and brown, education, disasters, climate change) should to synthesize lessons from these domains (e.g., cutting across domains, cutting across geographical boundaries)
- International Cooperation no need to reinvent the wheel, avoiding overlaps, maximizing limited resources

Cảm ơn! Arigatou gosaimasu! 谢谢 Gamsahamnida Terima kasih! Thank you! Salamat po!