Quarter-century monitoring of seedfall and tree growth in a forest dynamics plot, northern Japan

Jalier

Compilation and handling of an "ecological big data"

Kazuhiko Hoshizaki

Akita Prefectural Univ. ILTER CC member

co-workers at Forestry and Forest Products Res. Inst.

M. Noguchi, M. Matsushita, T. Yagihashi, T. Saitoh,

M. Shibata, D. Hoshino,

K. Takahashi, K. Osumi, T. Masaki, W. Suzuki

Forest inventory and environmental monitoring

- Inventory datasets have contributed to:
 patterns of species diversity, forest biomass, etc.
 identification of conservation hotspots
- Moreover, we need to identify/predict ecosystem responses to environmental changes;
 However, inventory is often "snapshot"
- To evaluate change along time, forest dynamics plots (FDPs) are powerful.
- So far, many FDPs have been set up over the tropics, as well as Asia-Pacific region

A network of FDPs is growing over the planet

ForestGEO

by: Center for Tropical Forest Science,
Smithsonian Tropical Research Institute

The focus of this talk

- (1) To briefly summarize monitoring via FDPs in Japan
- (2) To introduce our long-term datasets: on tree diameter growth and on flowering/fruiting records in a temperate mixed-species forest, northern Japan
- (3) With these datasets, to introduce some results showing signs of community-wide changes in recent decades under climate change

Two types of Forest Dynamics Plots (FDPs) in Japan

(1) FDP network by
Forestry and Forest Products Research Institute

6 plots (4-6 ha each)

1987 Ogawa Forest Reserve (eastern highlands)

→ most successful, flagship site

1988 Kanumazawa Riparian Forest (northern mountains)

1990~ Other 3 plots

© FFPRI

(2) Monitoring Sites 1000 project

- Founded by Ministry of the Environment, Japan
- Initiated in 2003
- Various types of ecosystems; alpine zones, grasslands, forests lakes, salt marshes etc.
- 21 FDPs, including FFPRI's plots, have been intensively investigated (1 ha each)

© Ministry of the Environment, Japan

Kanumazawa Riparian Research Forest

a core site of Monitoring Sites 1000 formal site of JaLTER /ILTER

- Cool temperate climate, landscape is beechdominated
- Along creeks, species-rich stand
- 4.71ha permanent plot since 1988
- Tree census, seed-trapping, seedling census

Hoshizaki et al. (1997) J Veg Sci Suzuki et al. (2002) For Ecol Manage Masaki et al. (2007) Ecol Res Oki et al. (2013) Ecoscience

Climate change in the region

Meteorological data at the nearest weather station

- Summer getting hotter and longer
- More winter snow

Has tree community responded to the changing climate??

Tree census parameters

- Species composition (diversity), abundance (in # of stems, basal area, volume)
- Spatial distribution

Tree census parameters

- Species composition (diversity), abundance (in # of stems, basal area, volume)
- Spatial distribution
- Repeated census provides: individual tree growth stand growth recruitment of young trees
- Long-term data is required to detect meaningful pattern

Our dataset covers:

290

22 years (1993-2015), 5132 stems in 4.71-ha whole plot; and 27 years (1989-2016), 1077 stems in 1-ha core area

Stand growth during decades

- 1 Aesculus
- 2 Cercidiphyllum
- 3 Fagus
- 4 Pterocarya
- 5 Quercus

Individual growth and annual weather (1)

- Diameter increment varies annually
- In some species, tree growth appears to synchronize between individuals

Individual growth and annual weather (2)

Sensitivity of diameter increment to annual weather

Part 2: Seed trap data

 Compared with litter-trap studies, less attention has been paid to seed trapping in environmental sciences

- Annual variation in seedfall, i.e. masting, is an important phenomenon:

Masting provides fitness benefit (regeneration) for trees

Resource pulse/starvation influences the entire ecosystem, including human-wildlife conflicts (e.g., bears' home-range enlargement)

Masting has been suggested to cued by weather but only evidenced in some well-studied species

- Is there any trends in flowering and/or seeding discernible in the dataset?

Spatially placed seed traps is a feature of FFPRI's FDPs
>25 year monitoring

- 60-121 traps/yr (depending on years)
- Installed in 1-ha core area
- Sample collection:
 biweekly or monthly

Collection of litters/seeds

Trapping efforts in Kanumazawa

- Since 1989 (starting 50 traps)
- 17,000 trap·month in total

Data summary (dataset compiled: 1990-2013)

Item	N for 23 yr	%
Flower/inflorescence	660,023	41.8%
Fruit/seed	807,626	51.2
Husk/other tissue	110,830	7.0
Total	1,578,479	100

68,500 records includes:

- 1,580,000 items,
- 40 species

The dataset is growing annually

Annual values in <u>reproductive investment</u> = $\frac{Dry \ weight \ of}{flowers + seeds}$

Long-term changes in reproductive trends

Discussion

1) Trend changes detected in Kanumazawa in decades

- Contrasting changes by species;
 - Dominance ranking has changed
 - Reproductive investments are increasing or deceasing
- The change in masting might result in cascades through species interactions in the entire ecosystem to our daily QOL (e.g. human-wildlife conflicts), etc.

Discussion

1) Trend changes detected in Kanumazawa in decades

- Contrasting changes by species;
 - Dominance ranking has changed
 - Reproductive investments are increasing or deceasing
- The change in masting might result in cascades through species interactions in the entire ecosystem to our daily QOL (e.g. humanwildlife conflicts), etc.

2) Next steps to be fixed

- 1) These changes suggest association with the changing climate, but does not tell causality; >30 years required for time-series analysis
- 2) Under the current climate regime, what forest is projected? Are the changes consistent in other sites/regions/countries?

3) Potential collaboration topics and difficulties

- Geographic/phylogenetic variation; cascades across wider spatial scale or wider stakeholders
- Many FDPs in Malaysia, Thailand, China, Taiwan Is., Japan, etc.
- Optimize "big dataset" for analysis; we need not to merely continue observation but to handle the growing "big data"
- Interesting/attractive research questions called-for

3) Potential collaboration topics and difficulties

- Geographic/phylogenetic variation; cascades across wider spatial scale or wider stakeholders
- Many FDPs in Malaysia, Thailand, China, Taiwan, Philippines, Japan, etc.
- Optimize "big dataset" for analysis; we need not to merely continue observation but to handle the growing "big data"
- Interesting/attractive research questions called-for

Great thanks to:

K. Sekimura, S. Yamamoto,

K. Takano, R. Sato, (FFPRI)

S. Sato, Y Suzuki & H. Narita (APU)

T. Kanazashi, T. Yagi, (FFPRI),

S. Sanda, Y. Takano, S. Oki & D. Sugiura (APU)

Ministry of Agriculture, Forestry and Fisheries;

Ministry of the Environment;

Ministry of Education, Culture, Sports, Science and Technology

← Sample sorting, Data input & handling

← Field sampling

← Research budgets, **Facility**

