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1. A brief introduction to modern astrophysics 
 

 1.1 Preamble 
 Astrophysics is a branch of science which has literally exploded during the 
past two or three decades, during which we have learnt more than what we knew 
previously. But at the same time it made us aware of the immensity of what 
remains to be understood. This is particularly true for cosmology, where it has 
become obvious that our ideas concerning gravity at large scales are very likely to 
require some revision: the discrepancy between the energy density of the Universe 
as we can measure it more or less directly and the value which we infer from our 
current ideas concerning the dynamics of the evolution of the expanding Universe 
ask for new physics and/or for a new theory of gravity at large distances. It is with 
this in mind that these notes have been written. Their aim is not to train future 
experts in general relativity but to open the students’ minds to the main ideas that 
are at play in order to prepare them to the future.  
 Recently, astrophysics has attracted physicists from many different horizons: 
nuclear, particle, atomic, molecular, condensed matter, plasma and even life 
sciences. This diversity makes the field particularly attractive and dynamic. 
Students who wish to enter it today 
should get some familiarity with each 
of these branches of science before 
becoming too early specialized in a 
particular domain. In particular, some 
understanding of the ideas which 
govern our current thinking in 
cosmology, that is the study of the 
properties and evolution of the 
Universe on the largest possible scale, 
without paying attention to the details 
of its structure, is part of the knowledge 
which a student should acquire.   
 A number of coherent results 
have been obtained recently which 
have led to the construction of a 
standard model of astrophysics that is 
widely accepted in the community, the so
in the framework of general relativity w
isotropic and homogeneous at large sca
Robertson-Walker (FRW) metric that em

 

 

-called concordance model. It is pictured 
ith the assumption that the Universe is 
le, leading to the so-called Friedmann-
beds both the Hubble expansion of the 

Figure 1.1. The Hubble velocity-distance relation 
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Universe and, locally, special relativity. Its study makes up much of the present 
notes. Within this model, presently available observations make it possible to 
measure the curvature of the Universe, which is found to cancel: the Universe is 
flat. Moreover, measuring the expansion of a flat Universe makes it possible to 
calculate its energy density. Recently, the addition of type Ia supernovae to the set 
of standard candles has allowed for major progress in the precision with which the 
Hubble (Figure 1.1) law has been verified: the Hubble constant is measured to be 
71±3 km/s/Mpc. The main problem of cosmology today is that the energy density 
predicted in this way is four times as large as what we are able to account for. It is 
convenient to refer the energy densities that we are able to measure directly to this 
predicted density, defining ratios which are called Ω. Their sum, instead of being 
unity as expected, is only one quarter. 
   Evidence in favor of the big bang, or rather in favor of a state of very high 
temperature and density in which the Universe was, some 14 billion years ago, is 
overwhelming. Most impressive, and probably that which carries the most 
information, is the detection of a cosmic microwave background which is the 
remnant of the transition from an electron-nuclei plasma state to a state of neutral 
atoms which occurred when the Universe was only 400 000 years old. But other 
information is available that is also determinant, in particular the nucleosynthesis 
that occurred 2 to 3 minutes after the big bang, the observation of stars, galaxies 
and interstellar matter which is now being made over the whole electromagnetic 
spectrum, the direct observation of the expansion of the Universe from the Doppler 
red shift of recessing galaxies and the evidence for the presence of dark matter in 
the surroundings of galaxies and galaxy clusters.  
 
 1.2 Nucleosynthesis and direct observations  
 A few minutes after the big bang, the Universe had sufficiently expanded 
and cooled down to allow for nucleons, protons and neutrons, to form nuclei. 
Before that time, any nucleus that might have been formed would have 
immediately disintegrated into its nucleonic components. This process is referred 
to as nucleosynthesis or baryogenesis1. At that time the neutron to proton ratio was 
about 1/6, differing from unity because of the neutron-proton mass difference, 
∆M=1.3 MeV, (at equilibrium, the ratio of the two populations is given by the 
Boltzmann factor, exp(– ∆M/kT), where k is Boltzmann constant and T is 
temperature). While the Universe continued to expand, it quickly reached a state 
where the energy density was no longer large enough for protons and nuclei to 
overcome the Coulomb barrier: nuclear reactions could no longer take place. 

                                                           
1 In principle, baryogenesis should be used to describe the confinement of quarks and gluons into hadrons (baryons 
or mesons) a microsecond or so after the big bang. 
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  As the neutron life time is 10 mn, 

neutron decays had no time to have a strong 
influence. The comparison between the size 
of the narrow window in temperature and 
pressure that allowed for nucleosynthesis to 
take place and the nuclear abundances 
which are measured today, severely 
constrains the parameters that described the 
Universe at that time, in particular its 
density and expansion rate. Of particular 
relevance to this analysis are the properties 
of light isotopes and the particularly strong 
binding of α particles, which are in a state 
of maximal spin and isospin symmetry. A 
corollary of this strong binding is that light 
even-even nuclei look like being made of α 
particles that are loosely bound together 
(so to speak, all the nuclear binding energy 
available has been used up to bind 

p
p

Figure 1.2 Nucleosynthesis, comparison of 
predictions and measurements of abundances vs
density 
internally the α particles). In particular, the 
lightest possible even-even nucleus, 8Be, is not stable and decays into two α 

articles as soon as it is formed. The cross-section to form heavier nuclei, in 
articular the next even-even nucleus, 12C, is accordingly very low (it requires the 

simultaneous presence of three α particles in a same small volume or complicated 
catalytic reactions). Similarly, the direct formation of α particles from nucleons, 
requiring the simultaneous presence in a very small volume of four nucleons, is 
very unlikely. It must proceed via a chain of catalytic reactions called the p-p cycle 
(inside stars, burning hydrogen into helium may also proceed through the so-called 
CNO cycle but this was excluded at the time of nucleosynthesis). From accurate 
and reliable measurements of the abundances of helium and deuterium in the 
Universe, one finds (Figure 1.2) that the baryonic contribution to the predicted 
energy density of the Universe is only ΩB = 4.4%. This is in fact four times larger 
than the contribution of stars as one can estimate it from direct observations in 
various domains of the electromagnetic spectrum, after extrapolation to the whole 
Universe. The progress made recently in our understanding of the evolution of 
stars, from birth to death, makes us believe that this result is reliable. It is only 
recently that one has identified the missing 3% as being mostly due to hot gases 
that have been detected in X ray astronomy and pervade many galaxy clusters. 
While a precise and foolproof estimate of ΩB remains to be done, and will keep 
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astrophysicists busy for many years to come, it seems difficult to imagine that one 
might be missing a major fraction of what is known today. 
 
 1.3 Dark matter 

 The second component that has 
been extensively studied in the past 
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two decades is dark matter. Evidence 
for it comes mostly from the velocity 
curves of stars far from the hub of 
spiral galaxies (Figure 1.3) (both the 
Milky Way and nearby galaxies) and 
from considerations on the binding of 
galaxy clusters. Velocity curves plot a 
star velocity V as a function of its 
distance r from the galactic centre. In a 
region far enough from the centre, one 
expects to be in the Kepler regime, 
namely all the attracting mass M is 
contained inside the orbit; in the 
approximation of a circular orbit, 

quilibrium implies GM/r2=V2/r, that is V should decrease with distance as 1/√r. 
stead, it remains constant deep into the region where the galaxy baryonic density 

as declined. Similarly, several clusters of galaxies should be unbound if they were 
 contain only baryonic matter. Detailed studies of these anomalies, together with 

ther considerations such as the stability of typical spiral galaxies, have led to the 
onclusion that galaxies and galaxy clusters must be embedded into another form 
f matter that is called dark matter. It must be made of weakly interacting massive 
articles (WIMP) to explain what is observed. The need for massive particles (one 
eaks of cold dark matter, CDM, as opposed to hot dark matter in the case of 
lativistic particles) stems from the need to allow for the formation of galaxies in 
e early Universe, which would not have been possible with hot dark matter. The 

urrent estimate of the contribution of dark matter to the energy density of the 
niverse is ΩCDM = 22.2%. Here again, this result is not considered to be 

ontroversial, even if the nature of dark matter is still a mystery. A natural 
andidate is the lightest supersymmetric partner of known particles, most probably 
 neutral spin ½ fermion. All efforts to find such particles have been defeated until 
ow but a new accelerator under construction in Geneva, the LHC, should be able 
 produce and detect them, if they exist, within a few years. 

Figure 1.3 A typical velocity curve giving evidence 
for dark matter 
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 1.4 Dark energy and the cosmic 
microwave background (CMB) 
 Baryonic matter and dark matter 
making up only 27% of the predicted density 
of the Universe, we are left with a deficit of 
73% which is unexplained (Figure 1.4). It is 
best described by a cosmological constant, 
meaning a new2 repulsive force that becomes 
important only at very large distances (that is 
distances commensurate with the size of the 
Universe, in the Gpc range). It would 
therefore be only recently, a few billion 
years ago, that the Universe became dark 
energy dominated and started accelerating 
its expansion rate rather than slowing it 
down as it was doing previously. Some 

additional evidence in favor of such a description is given by the observation of 
very large red shift galaxies being fainter than predicted. The question then 
remains to understand what a cosmological constant would mean physically. 

 

Dark Energy 73% 

CDM    
23% 

Baryons 4% γ + ν < 1% 

Figure 1.4 The content of the Universe 

 However, other explanations need to be 
explored: our understanding of gravity at large 
distance may well be insufficient to allow for 
reliable predictions to be made: it would then be 
the prediction which is wrong, namely the 
predicted value of the energy density of the 
Universe. As this is largely obtained from CMB 
data (Figure 1.5), mostly from WMAP3, it may 
be useful to very briefly describe the kind of 
information they carry:   
 – The Universe was extremely 
homogeneous and isotropic when the CMB 
observed today was emitted. This was at a red 
shift of 1000 or so from today, corresponding to 
the cooling down from plasma temperatures, in 

                                                           
2 I mean a force which is neither part of Newtonian phen
model of elementary particles. 
3 Wilkinson Microwave Asymmetry Probe. 

 

Figure 1.5 The Wilkinson Microwave 
Asymmetry Probe (WMAP) 

omenology nor part of the standard 
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the eV range, to the 2.7K observed today. Since that time the Universe has been 
transparent and the CMB photons have traveled nearly undisturbed4 until they 
reach us. 
 – The Universe was in perfect thermal equilibrium at that time as testified by 
the shape of the spectrum which agrees precisely with the Planck shape of a black 
body radiation spectrum (Figure 1.6). 

The CMB: a revolution in astrophysicsThe CMB: a revolution in astrophysics
  

COBE and WMAPCOBE and WMAP

 Figure 1.7 Sky map of the CMB temperatures 
 
  

Figure 1.6 The black body Planck spectrum of the 
cosmic microwave background 

 – Below the 10–5 level or so, small inhomogeneities are observed in the 
temperature distribution over the whole sky (Figure 1.7). A Fourier analysis 
reveals that they are dominated by small spots of a size of approximately one 
square degree (Figure 1.8). These correspond exactly to the size of what was the 
horizon (namely the causally connected domain over which thermal equilibrium 
was precisely achieved) at the time of emission under the assumption of a flat 
Universe. A significant curvature would have resulted in a more diluted or more 
crowded pattern depending on its sign. The curvature of the Universe is measured 
this way by a quantity k = –1±1.3 %, a flat Universe having k=0.  
     The most important cosmological parameters (as given by the WMAP 
Collaboration in March 2006) are summarized in the table below. Each quantity is 
given as three numbers: the value, the positive uncertainty and the negative 
uncertainty.  

                                                           
4 Except for a small perturbation at the time when galaxies formed, referred to as the reionization 
era, at a red shift of order 10. Information on this epoch can be extracted from a detailed study of 
the CMB power spectrum. 
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WMAP SUMMARY (March 2006) 
 

Name Symbol (unit) Value error + error – 
Hubble constant H(km/s/Mpc) 70.9 2.4 3.2 
Baryon fraction ΩB (%) 4.44 0.42 0.35  
Matter fraction  ΩB+CDM (%)  26.6 2.5 4.0 
Critical density ρcrit (10–26kg/m3) 0.94 0.06 0.09 

Dark energy  ΩΛ (%) 73.2 4.0 2.5  
Redshift reionization zion 10.5 2.6 2.9 

Age of Universe T(Gy) 13.73 0.13 0.17 
Equation of state w – 0.926 0.051 0.075 
Spatial curvature k – 0.010 0.014 0.012 

 
1.5 Mass and distance scales in the Universe 
 I close this brief introduction with  Figure 1.9 that displays the positions of 
various physical objects in a mass vs distance plot. It is instructive in many 

respects. The units are 

the solar mass and 
centimeters. One should 
remember that the 
Schwarzschild radius is 
proportional to mass, that 
of the Sun    being 3 km. 
The energy contained 
within the horizon of the 
evolving Universe, in 
both its matter and 
radiation dominated era, 
is proportional to its age.  
The Planck scale, 
1/MPlanck , is half the 
Schwarzschild radius 
associated to the Planck 
mass. White dwarfs and 
neutron stars fit between 
the Sun and Cyg X. 
Figure 1.8 Fourier (or better spherical harmonic) analysis of the angular power 
spectrum of the CMB. The large peak is the first so called acoustic peak and is 
located precisely where one would expect it in the case of a flat Universe. The 
general decrease of the power spectrum toward higher multipole moments is 
consistent with inflation. Information is also contained in the peaks visible at 
high moments. 
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2. A brief reminder of special relativity 
 

 The lines below are only a reminder, the student is supposed to have learned 
the topic earlier. The accent is placed on aspects of relevance to cosmology. 
 Unless otherwise specified we use natural units where ħ = c =1. 
  
 2.1 Lorentz transformations 
 Lorentz transformations along Ox read (y and z being unchanged) 
 x’= x coshα + t sinhα 
 t’ = x sinhα + t coshα 
 The system S in which x and t are measured moves along the x axis, which is 
the same as the x’ axis, with velocity β=tanhα measured in the system S’ where x’ 
and t’ are measured.  
 In S’ two events measured at a same time t’ give  
 (x1–x2) sinhα + (t1– t2) coshα =0 and therefore  
x’1–x’2 =(x1–x2) coshα +(t1–t2) sinhα  
 = (x1–x2) (coshα – sinh2α/coshα)  
 = (x1–x2) /coshα. 
Namely distances appear to be contracted by a factor γ =coshα =1/√(1–β2). 
 On the contrary, two events measured at a same location x in S give  
 t’1–t’2  = (t1–t2) coshα . Namely time differences appear to be dilated by the 
same factor γ. 
 This result is not as trivial as it may sound, as it might seem to introduce an 
asymmetry between S and S’. Superficially, one might think that distances 
measured in S will appear dilated with respect to S’ and that time differences 
measured in S will appear contracted, but it is not true of course. It is the 
measurement process that is not symmetric: to measure a distance in the fixed 
frame you compare two events that occur at the same time in the fixed frame while 
to measure a time difference in the fixed frame you compare two events that occur 
at the same location in the moving frame. It is important to have well understood 
this somewhat subtle difference.  
 As exp(±iα)=cos(α)±isin(α), cos(α)={exp(iα)+exp(–iα)}/2=cosh(iα) and 
sin(α)={exp(iα)–exp(–iα)}/2i=–isinh(iα). The Lorentz transformation may 
therefore be rewritten, replacing  coshα by cos(–iα)and sinh(α) by isin(–iα) 
 x’= x cos(iα) – it sin(i α) 
 it’ = x sin(iα) + it cos (iα) 
 A Lorentz transformation is therefore a rotation by an angle iα in the (x, it) 
plane. In the same way as a rotation in the (x,y) plane leaves x2+y2 invariant, the 
Lorentz transformation leaves x2+(it)2=x2–t2 invariant. And in the same way as the 
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rotation by an angle α simply increases the polar angle θ of the vector (x,y) by α, 
the Lorentz transformation increases by iα the equivalent of θ, namely  
atan (it/x)=iargth(t/x). The quantity argth (t/x), which increases by α in the Lorentz 
transformation, may also be written5 ½ln {(t+x)/(t–x)}. When referred to the 
energy-momentum four vector, this quantity is called rapidity, usually written y. 
 
 2.2 Addition of velocities 
 If a velocity vx=dx/dt parallel to Ox is measured in S, the velocity vx’=dx’/dt’ 
measured in S’ is (dx coshα+dtsinhα)/(dx sinhα+dt coshα)=(vx+β)/(1+βvx). One 
recognizes here the law of addition of tanh, the product of two rotations being a 
rotation by the sum of the rotation angles. Whatever vx<1 and β<1, vx’ is still a 
tanh and always smaller than 1: the light velocity cannot be exceeded by adding 
velocities that are themselves smaller than the light velocity. However one may 
conceive the existence of particles having velocities larger than the light velocity, 
such particles have received a name, tachyons, even though no evidence for them 
has ever been found. If a velocity vy=dy/dt normal to Ox is measured in S, the 
velocity vy’=dy’/dt’ measured in S’ is dy/(dx sinhα+dt coshα)=vy/[γ(1+βvx)].  
Note that vy’/vx’=vy/[γ(vx+β)] and v’2=v’x

2+v’y
2=(vx

2+2βvx+β2+vy
2–β2vy

2)/(1+βvx)2. 
Writing v2=vx

2+vy
2   we find v’2–1=(v2–1)(1–β2)/(1+βvx)2. In particular, as v’2–1 

and v2–1 have the same sign velocities smaller than the light velocity remain so and 
v=1 implies v’=1. 
 As an illustration of these relations let us consider a Hubble velocity field in 
a system S fixed with respect to a galaxy G0 and ask ourselves how it would look 
like seen from a system S’ fixed with respect to a galaxy G1 at a distance a from G0 
(measured in G0). Taking Ox along the line G0G1, we consider a third galaxy G 
having coordinates (a+x, y) in G0 and (x’,y’) in G1. The velocity of G is {H(a+x), 
Hy} in S, where H is the Hubble constant. The velocity of G1 in S is Ha and that of 
G0 in S’ is accordingly –Ha. At a distance 1/H from G0 the velocity has reached the 
light velocity and beyond this horizon we have tachyons. We take G to be within 
this horizon. The velocity of G as seen from S’ is 
{(H[a+x]–Ha)/(1–H2a[a+x]),Hy√(1–H2a2)/(1–H2a[a+x])} 
 ={Hx/(1–H2a[a+x]),Hy√(1–H2a2)/(1–H2a[a+x])}. 
This is different from what a Hubble field would look like in S’, 
{Hx’=Hx√(1–H2a2), Hy’=Hy}. In S’, not only the magnitude of the velocity does 
not obey the Hubble law but the velocity is no longer radial. Contrary to Euclidian 
geometry where the Hubble law is obeyed in any frame, the Hubble constant being 

                                                           
5 Indeed tanh(½ln {(t+x)/(t–x)})  
={exp[½ln{(t+x)/(t–x)]–exp[–½ln{t+x)/(t–x)]}/{exp[½ln{(t+x)/(t–x)]+exp[–½ln{t+x)/(t–x)]} 
={√(t+x)/(t–x)–√(t–x)/(t+x)}/{√(t+x)/(t–x)+√(t–x)/(t+x)}=(t+x–t+x)/(t+x+t–x)=x/t. 
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the same at all points in space, it cannot be obeyed in special relativity. It can only 
be obeyed in a privileged frame and a Hubble field is not consistent with the 
cosmological principle. Of course, on the horizon, the velocity of G as seen from 
S’ is equal to the light velocity: the horizon is the same in all frames: no new 
galaxy, which was behind the horizon, can be seen by moving closer to it. 
 Conversely, we may ask which velocity field, if there exists any, would be 
the same in any frame; namely does there exist a velocity field which is consistent 
with the cosmological principle. For reason of symmetry, we take the field to be 
radial in S, namely the velocity of G is {H(a+x), H(y)} in S where H is now a 
function to be determined. The velocity of G in S’ is  
 {[H(a+x)–H(a)]/[1–H(a)H(a+x)],H(y)√[1–H2(a)]/[1–H(a)H(a+x)]} which 
we want to be equal to {H(x√[1–H2(a)]),H(y)}. As we know that the problem has 
no solution, let us be less exigent and look for a solution valid locally in the 
neighbourhood of x=ka. Developing H(ε) =H0ε+H1ε2+H2ε3, we obtain for the x 
component  
 {H0ka+H1(2+k)ka2+H2(3+3k+k2)ka3}/{1–H0

2a2(1+k)–H0H1a3(1+k)(2+k)} 
 =H0ka+H1(2+k)ka2+H2(3+3k+k2)ka3+H0

3ka3(1+k) 
 =H0ka–½H0

3ka3+H1k2a2+H2k3a3 

namely H1=0 and 3H2(1+k) = –(3/2+k)H0
3 or H2 = –⅓H0

3(3/2+k)/(1+k).  
 For the y component we find √[1–H2(a)]=1–H(a)H(a+x), namely 
½H0

2a2+H0H1a3=H0
2a2(1+k)+H0H1a3(2+3k+k2), that is k= –1/2, H2 = –2/3 H0

3. 
 This result, that there is no universal velocity field that satisfies the 
cosmological principle in special relativity, will shed some light on the Robertson-
Walker metric when we come to study it (in that case, of course, the Hubble field 
will be consistent with the cosmological principle because, by then, we will have 
given up special relativity). 
  
 2.3 Energy and momentum, Maxwell equations 
 Before closing this section, let us recall that energy E and momentum p form 
a four vector, E2–p2=m2, m being the rest mass of the particle, a scalar. Its rapidity 
(measured along Ox), as was already said, is y=½ln {(E+px)/(E–px)}. The leading 
terms of the development of E and p are E=m+1/2mv2 and p=mv. 
 The gradient operator ∂ transforms as    ∂y = ∂y’  , ∂z = ∂z’  and  
∂x’ = dx/dx’ ∂x + dt/dx’ ∂t = coshα ∂x – sinhα ∂t
∂t’ = dx/dt’ ∂x + dt/dt’ ∂t = – sinhα ∂x+ coshα ∂t
 In vacuum, Maxwell equations read 
∂t H = –∂×E     ∂ .H=0     ∂t E = +∂×H     ∂ .E=0 
 In particular, ∂t Ex = ∂yHz–∂zHy     and  ∂xEx+∂yEy+∂zEz =0 
∂t’ Ex= (– sinhα ∂x+ coshα ∂t )Ex= sinhα (∂yEy+∂zEz)+ coshα (∂yHz–∂zHy) 
    = coshα{∂y(Hz+βEy)–∂z(Hy–βEz)}=∂y’( coshαHz+sinhαEy)–∂z’(coshαHy–sinhαEz) 
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 The relativity principle implies that ∂t’ Ex’ = ∂y’Hz’–∂z’Hy’ 
 Dealing similarly with the other equations, one obtains 
 Hx’=Hx     Ex’=Ex
 Hy’=coshαHy–sinhαEz      Ey’=coshαEy+sinhαHz
 Hz’=coshαHz+sinhαEy      Ez’=coshαEz–sinhαHy
 These equations explicit the transformation of the electromagnetic field in 
vacuum. They show that the appearance of forces induced by the movement of a 
charge or of a current in a field is fully accounted for by the Lorentz 
transformation, namely the forces must be evaluated in the frame where the system 
is at rest. This result is a major success of the theory.  
 
 2.4 Accelerations 
 A fundamental difficulty of special relativity appears in the presence of 
accelerations. Consider two systems having the same origin and the same z and t 
axes but in uniform rotation with respect to each other around the z axis: 
 x’=x cosωt–y sinωt,     y’=xsinωt+ycosωt 
 In the (x,y) plane, at a distance r from the origin, there is a tangential 
velocity ωr and a radial acceleration – ω2r. A particle cannot be at rest in that 
frame, otherwise at distance 1/ω its velocity with respect to the other frame would 
reach the light velocity (note the analogy with our earlier discussion of a Hubble 
velocity field, here it is the tangential velocity that scales with r, in the Hubble case 
it was the radial velocity). The distance r is the same when measured in each of the 
two frames. But the tangential distance is contracted by a factor √(1–ω2r2): for an 
observer in the fixed frame the ratio of the circumference of a circle to its radius is 
no longer 2π but 2π√(1–ω2r2). It will seem to this observer that space has been 
distorted. For r=1/ω, namely when the tangential velocity reaches light velocity, 
the contraction factor cancels and the circumference reduces to a point. This is 
reminiscent of the geometry of a sphere of radius a: a parallel at z=a cosθ has a 
circumference 2πa sinθ= 2πa√(1–z2/a2). Here a, the radius of curvature, plays the 
role of 1/ω. Accelerations seem therefore to imply a distortion of space.  
 Having noted the perfect symmetry of special relativity with respect to 
exchanges of coordinates (x, y, z, it) we may wonder what the rotation just 
considered corresponds to when changing coordinates. It is a rotation in the (x,y) 
plane by an angle –iωit. What about a rotation in the (z,it) plane by an angle –iωx, 
namely a Lorentz transformation along Oz with velocity – tanh(ωx) ? The 
equivalent of the circle is now a line z2–t2=r2, the two branches of an hyperbola in 
the (z,t) plane which are scanned when x varies. This hyperbola is the same when 
viewed from both frames, but not the arc length along it. Between an event 
x=y=t=0, z=r and an event dx,dt, y=0, z=r, both on the hyperbola, two observers 
will measure different arc lengths, that is different values of dt for a same dx. One 
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of the observers may have dx=dt, namely the two events connected by a light ray, 
then the other observer will measure a different light velocity. From this point of 
view, accelerations seem to imply a non-constancy of the light velocity. The need 
to consider distortions of the metric properties of space and to abandon the 
hypothesis that the light velocity is a constant are the basic motivations for 
introducing general relativity as a theory able to handle frames accelerating with 
respect to each other.  
  
 2.5 Quantization 
 Special relativity can be quantized (at variance with general relativity), the 
equivalent of angular momentum corresponding to an imaginary spin operator. In 
the case of a spin ½ this operator has two eigenvalues, ±½, associated with two 
different subspaces of the Hilbert space, states of left handed and right handed 
particles respectively. The associated representation gives Dirac equation and 
implies the existence of particle and antiparticle states that transform into each 
other by charge conjugation. At the scale at which it can be tested, namely where 
gravity effects can essentially be neglected, special relativity has defeated all 
attempts at revealing deviations from what it predicts: it is verified to an extremely 
high precision.  
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3. Extending the relativity principle to free falling frames: 
Gravity of photons 

 
 3.1 Extension of the relativity principle to free falling frames  
 The idea that gravity can be described as a geometric property of space-time 
rather than as a dynamical process is at the root of general relativity. It makes an 
elegant use of the remark – which was made at Galileo time but which had not yet 
been made use of – that all masses fall in the same way in a gravity field. In 
Newtonian language this implies that the inertial and gravitational masses are 
equal6 and are irrelevant to energy conservation: both the gravity potential and the 
kinetic energy are proportional to it. The extension of the relativity principle from 
inertial frames to free falling frames allows for describing locally, in any small 
space-time domain, the gravity field by an adequate acceleration given to the free-
falling frame. Without going much further into the mathematics implied by these 
statements, one can deduce a host of important consequences touching the need for 
a revision of our concepts of space and time and for giving up special relativity, 
retaining it only locally. This is the subject of the present section. The general case, 
which leads to Einstein equations, will be treated next. 
  
 3.2 The action of gravity on photons, gravitational red shift 
 As a very simple illustration, consider a 
homogeneous gravity field directed along Oz in 
S. Let γ be the acceleration (Figure 3.1). In the 
free falling frame S’ defined by the 
transformation z’=z–1/2γt2 all masses have a 
uniform linear movement. Extending the 
principle of relativity to this free falling frame we 
obtain a number of interesting results. 

 
A E

S

 Take two points in S, A and B, on top of 
each other, A above B at a distance h of it. Send a 
photon of energy E from A to B. In B, the photon 
has an energy E’, which would be equal to E if 

Figure 3.

                                                           
6 The first accurate measurement of the equality of the inertial and g
to Roland von Eötvös. It was later considerably improved by Rober
Braginskii in the gravity field of the Sun and, more recently, by E
masses are known to be equal to within 10–12. A very precise analy
the Moon with respect to the Earth, using laser reflectors left on the 
15 and Linakhod 2, has shown that the gravitational binding energy c
inertial and gravitational masses.  
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the gravity field had no action on massless particles. To evaluate it consider the 
event in the free falling frame S’ where the gravitational field vanishes. This 
system starts at zero velocity from A and reaches a velocity γt in B, with t=h being 
the time it took for the photon to go from A to B. A photon being massless has 
equal energy and momentum, E=p. At B, the Lorentz transformation reads  
E’= coshα E+ sinhα p where tanhα = γh. To first order in α, E’=E+Eγh, namely 
the photon has acquired an additional energy Eγh in the gravity field, 
corresponding to the usual m0γh term in classical Newton mechanics, m0 being the 
rest mass. It is indeed E and not m0 that matters, it is energy that weighs, not rest 
mass7. Accordingly, when a star having a mass M and a radius R emits a photon of 
frequency ν, this photon is red shifted when it reaches far distances by an amount 
(remember that E=ħν) ∆ν/ν=∆E/E= γR=GM/R. One speaks of a gravitational red 
shift8. In the case of the Sun, the radius is 110 times larger than the Earth radius but 
the density is 4 times smaller, hence γ is 27 times larger, that is 0.27 km/s2  and 
∆ν/ν=0.27×110×6400/(3 105)2=2 10–6. In the case of a neutron star ∆ν/ν may take 
values of order unity, in which case this first order estimate is no longer valid. 
  
 3.3 Schwarzschild metric and Birkhoff’s theorem 
 Another way to look at the action of gravity on photons is to consider a mass 
M isolated in space, a star or a galaxy, and compare two different free falling 
frames: one has just enough velocity to escape to infinity, namely its metric is 
defined by the normal special relativity metric, ds2=dt2–dl2; the other has less, 
enough to reach a distance r from M, at which point its velocity cancels and it falls 
back onto M. The timing is such that the first frame coincides with the second at 
the very moment where the latter has reached its turning point. The velocity V of 
the first frame at this moment is the escape velocity at r, such that 1/2V2=MG/r, 
that is V=√ (2MG/r) (we assume that r is large enough for V to be much smaller 
than c and Newtonian arithmetic to apply). The metric in the second frame is 
trivially obtained from that in the first frame by Lorentz transformation: distances 
are contracted and times dilated by a same factor, 1/√(1–V2)=1/√(1–2MG/r). Hence 
                                                           
7 While m0 was a scalar, E is not: gravity is not a scalar field. E is the fourth component of a four-
vector, implying that gravity is in fact a tensor field: we will have to consider the energy-
momentum tensor to describe what gravity couples to in the general case of a non uniform 
gravity field. At the end of the XIXe century, with the success of Maxwell equations, and even 
shortly after special relativity, many tried to describe gravity as a vector field but it had to fail. 
The carrier of gravity, the so-called graviton, has accordingly spin 2. 
8 Gravitational red shift on Earth (10–16 per meter!) has been measured using the Mössbauer 
effect by Robert V. Pound and his colleagues to an accuracy of one percent. 
Using a hydrogen maser clock in a rocket at 10 000 km altitude, Robert F. C. Vessot and 
collaborators have measured the gravitational red shift to an accuracy of 2 parts in 104. 
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the metric in the second frame: ds2=(1–2MG/r)dt2–(1–2MG/r)–1dr2. This is called 
the Schwarzschild metric. Introducing the polar angles θ and φ, which are 
unaffected, it reads: 
 ds2= (1–2MG/r)dt2–(1–2MG/r)–1dr2–r2(sin2θdφ2+dθ2). 
 A singularity occurs at Rschwarzscild=2MG, the Schwarzschild radius, where 
the escape velocity is equal to the light velocity (equivalently, where a body falling 
from infinity, originally with zero velocity, has been accelerated to the light 
velocity). It corresponds to black holes.  
 The Schwarzschild metric, written here in the case of a single mass isolated 
in space, is in fact valid in a much more general case: Birkhoff has shown that 
Schwarzschild’s metric holds in empty space surrounding any spherically 
symmetric mass distribution, even if this empty space is itself embedded in a 
larger, spherically symmetric distribution of matter.   
  
 3.4 Gravitational delay 
 Consider light traveling from the surface of the Sun to the Earth, namely 
ds=dθ=dφ=0. Then dt=dr/(1–2MG/r). The time t taken by the light to reach the 
Earth is therefore ∫dr/(1–2MG/r)=∫rdr/(r–2MG)=∫(u+2MG)du/u where u=r–2MG. 
Hence t=t0+2MGln{(aearth–2MG)/(Rsun–2MG)} where t0 is the time in the absence 
of gravity, aearth is the radius of the Earth orbit and Rsun is the Sun radius. Putting 
numbers in gives a gravitational delay of the order of 50 µs, namely 10–7 times the 
uncorrected time. When sending a radar signal from the Earth to Venus and back, 
one may compare the extreme situations where Venus is on the other side or on the 
same side as the Earth with respect to the Sun, almost lined up in both cases. Then 
the difference in travel time corresponds to two full traversals near the Sun, namely 
4×50=200 µs. This has been verified with a precision of the order of a percent. The 
above calculation neglected the delay experienced by the photons when passing by 
the Sun because of their angular deviation. To estimate it, we set ds=dr=dθ=0 and 
θ=π/2 in the Schwarzschild metric. Hence, dt=rdφ/(1–2MG/r). Putting numbers in, 
it corresponds to less than 10% of the gravitational delay calculated above.  
 
 3.5 Gravitational bending of light, gravitational lensing  
 The gravitational delay for a far away star 
seen near the Sun edge (Figure 3.2) is twice that 
given above for the gravitational delay from the Sun 
to the Earth, namely ∆t=4MGln(R–2MG) + terms 
that do not depend on R. Taking the derivative, we 
obtain  d(∆t)/dR ~ –4MG/R, R being now the closest 
distance of approach to the Sun. This measures the 
angle by which the wave front planes are bent when 

d(∆t) 

R
M

dR 
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passing near the Sun, which is also the angle by which the light rays are bent since 
they are normal to the wave fronts. It corresponds to nearly 2 seconds of arc.  
 The Sun may be thought of as being a weak lens with focal length equal to 
its radius divided by this angle of deflection, that is some 550 AU. Such 
gravitational lensing effects (Figure 3.3) are seen in many instances; in particular 
they produce so called Einstein rings on very distant quasars (Figure 3.4).  
  

 
 

  

Figure 3.4 Deep field surveys giving evidence for 
very old galaxies with redshifts reaching 10 and 
showing several examples of Einstein rings. 

 

Figure 3.3 An illustration of gravitational lensing. 
What is shown here is the increase of luminosity of a
LMC (Large MagellanicCloud) star in the 
background resulting from the passage in front of it 
of an obscure object in the halo of our galaxy. 
Observation is made both in the blue (top) and in the 
red (bottom). 
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4. General relativity and Einstein equations 
 
 The results of the last chapter have shown that the extension of the relativity 
principle to free falling frames implies a violation of special relativity and a serious 
revision of our concepts of space and time. In particular, our discussion of 
gravitational delay has shown that the light velocity can no longer be considered as 
a constant, a gravitational correction of order 2MG/r must be applied. While the 
relativity principle is not only still valid but even extended to free falling frames, 
the constancy of the light velocity, the other basic assumption of special relativity, 
must now be abandoned. 
 
 4.1 The strategy 
 In formulating general relativity, Einstein was very attentive at extending the 
relativity principle to as many frames as possible. The idea was to start from the 
local frame – xµ , having a metric gµν – in which there is a gravity field and 
transform to a local free falling frame Xµ where special relativity applies. The Xµ 
frame would therefore have a metric Gµν=(–1, –1, –1, 1)δµν. The transformation 
would be linear and read Xµ=Ωµ

ν
 xν : it is sensible to only consider homogeneous 

transformations as the effect of translations is trivial and only complicates the 
writing. However, Einstein could not take it as granted that such a transformation 
exists. Indeed, if there is a point mass at the origin, no transformation can get rid of 
it. Only in vacuum, where there is no matter and no radiation is it reasonable to 
take it as granted that such a transformation should exist.  
 Before pursuing, let us have a closer look at the metric and how it 
transforms. The metric tensor (Einstein calls it the fundamental tensor) is defined 
from the relation below 

ds2=gαβdxαdxβ   (4.1) 
 
 Writing ds2=dS2=GµνdXµdXν=Gµν(xσ∂αΩµ

σ+Ωµ
α)dxα(xτ∂βΩν

τ+Ων
β)dxβ with 

∂α=∂/∂xα we get gαβ= Gµν(xσ∂αΩµ
σ+Ωµ

α)(xτ∂βΩµ
τ+Ωµ

β). This metric depends on the 
coordinates in the general case. Hence, while a geodesic is a straight line in the 
system Xµ it is in general a curve in the system xµ. It is only when the Ωµ

ν do not 
depend on coordinates that the gµν don’t either. But in that case a straight line 
transforms into a straight line and the xµ system is an inertial frame in the sense of 
special relativity. The gµν, in some sense, are the coordinates of the gravity field in 
the xµ system: they describe it completely. How one goes from 10 gµν (10 and not 
16 as the metric tensor is by definition symmetric) to the components of the gravity 
field does not need to be explicitly considered here.  
 Coming back to Einstein’s strategy, it consists therefore in considering a 
space with an arbitrary metric gµν and start by asking which condition this metric 
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must obey for a transformation to a free falling frame to exist; that is to an inertial 
frame in the sense of special relativity, namely a frame having the metric Gµν, or, 
more generally, a frame having a metric that does not depend on the coordinates. 
The only restriction Einstein places on the metric gµν is that det(gµν)=det(Gµν)= –1. 
We take it as always obeyed from now on. Having established these conditions, 
which are in some sense the field equations in vacuum, Einstein studied which 
function of the metric was representing the gravitational energy and, having found 
it, he wrote the general field equations by simply adding to the gravitational energy 
in vacuum that contained in matter and radiation. Namely, in his formulation, one 
essentially does not talk about gravity: the whole physics is contained in the metric 
and its relation to the energy carried by whatever matter and radiation there is 
around. From a physics point of view, knowing the metric is sufficient because the 
equations of movement are obtained by finding the geodesic, namely by 
minimizing ∫ds between two points 1 and 2: the whole of physics is indeed 
contained in the metric. 
 
 4.2 Field equations in vacuum 
 Einstein therefore started from a space having a metric obeying the 
determinant condition and asked which other condition had to be obeyed for being 
able to transform into a frame having a metric that does not depend on coordinates. 
 At this point it is useful to recall two theorems of differential geometry that 
address such questions. 
 Theorem 1 solves the problem of finding the geodesic given the metric. The 
equations of movement read  

d2xτ/ds2=Γµν
τ dxµ/ds dxν/ds    (4.2a) 

 
with the Christoffel symbols Γµν

τ given by   
 

Γµν
τ = ½ gτα (∂νgµα+∂µgνα–∂αgµν)   (4.2b) 

 
 Theorem 2 states that the condition for a frame to be transformable into 
another frame where the metric tensor does not depend on the coordinates, is that 
all components of the Riemann tensor Rµν cancel, Rµν being defined as  
 

Rµν = ∂αΓµν
α+Γµα

βΓνβα    (4.3) 
 
 This condition is a condition placed on the metric. 
 It is now easy to write the conditions which the metric must obey in vacuum, 
that is far from any matter or radiation. In that case, one must be able to transform 
to a frame where the metric is constant, therefore the Riemann tensor must cancel 
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and one obtains the 10 equations that constrain the metric tensor, which are in 
some sense the field equations in vacuum: 
 

 ∂αΓµν
α+Γµα

βΓνβα=0   (4.4) 
  
 Even far from any matter or radiation, there is gravitational energy: how 
does it relate to the metric?  At this point a third theorem is useful: 
 Theorem 3 introduces the Hamiltonian H= gµνΓαµβΓβνα and, noting that the 
equations (4.4) are equivalent to solving δ∫Hdxτ=0, states that the quantities tασ 
defined below are invariants 
 

∂αtασ =0 
κtασ = – ½{∂σgµν∂H/∂(∂α gµν)–δασH} = ½δασgµνΓλµβΓβνλ – gµνΓαµβΓβνσ   (4.5) 

  H= gµνΓαµβΓβνα,   κ=8πG 
 
 
 It is then possible to rewrite equations (4.4) with the tασ appearing explicitly, 
with the result below (writing t=∑α tαα) 
 

 ∂α (gλνΓαµν) = –κ (tλµ– ½δλµt)   (4.6) 
 
 This relation relates explicitly the metric in the left hand side to the energy 
content of the gravity field in vacuum on the right hand side. Indeed, the tλµ may be 
thought of as the energy components of the field, their conservation (Relation 4.5) 
expressing energy-momentum conservation. The coefficient κ=8πG that has been 
introduced gives them the proper scale as we shall see below when considering the 
Newton approximation. While equations 4.4, 4.5 and 4.6 are equivalent forms of 
the field equations in vacuum, the latter is written in a form which invites one to 
extend it to the case where there is matter and/or radiation around. 
 
 4.3 Einstein equations 
 Starting from equations 4.6 Einstein then postulated that in the general case, 
namely in the presence of matter and radiation, the field equations can be simply 
written by replacing tλµ by the sum (tλµ+Tλµ) where Tλµ is the energy-momentum 
tensor of the matter and radiation, with trace T. One obtains this way Equations 
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4.6a. It is then simple to work one’s way backward to obtain Equation 4.4a, the 
equivalent of Equation 4.49

 
∂α (gλνΓαµν) = – κ {(tλµ+Tλµ) – ½δλµ(t+T)}  (4.6a) 

 ∂αΓµν
α+Γµα

βΓνβα= – κ (Tµν – ½δµνT)   (4.4a) 
Equations 4.4a and 4.6a are two equivalent forms of Einstein equations. They 
relate the metric to the energy momentum tensor of whatever matter and radiation 
there is around. The movement can then be deduced from the metric via Equations 
4.2. In no place does one need to talk about gravity: its concept has been 
completely absorbed into that of space.  
 An essential justification of the procedure used by Einstein is that it 
naturally leads to energy-momentum conservation in the general case, namely 
Equation 4.5 now becomes 

 ∂α(tασ+Tασ) =0      (4.5a) 
 
implying 

∂αTασ = – ΓασβTβα    (4.5b) 
 

 Here, the right hand side describes explicitly the action of the gravity field 
on the energy-momentum of the matter and radiation present. 
 
 4.4 Newton approximation 
 In the limit of low velocities (with respect to light velocity) dx4/ds is equal to 
1 to second order in the dxi/ds (i=1 to 3). In (4.2a) the equations of movement are 
therefore dominated by d2xτ/ds2=Γ44

τ (dx4/ds)2 which, to leading order, becomes 
d2xτ/dx4

2=Γ44
τ. But Γ44

τ = ½ gτα (∂4g4α+∂4g4α–∂αg44); in this expression the 
derivatives with respect to time can be neglected when compared to those with 
respect to space and Γ44τ = – ½ ∂τg44 , hence, writing t=x4 , d2xτ/dt2= – ½ ∂g44/∂xτ . 
This is the result of Newton theory, ½ g44 being identified with the gravity 
potential Φ. 
 Concerning the field equations ∂αΓµν

α+Γµα
βΓνβα= – κ (Tµν – ½δµνT) (4a), let us 

recall the expression of the momentum energy tensor as a function of pressure p 
and density ρ: 

 Tαβ= –gαβ p+ρdxα/ds dxβ/ds   (4.7)  
 

                                                           
9 We ignore, in the present chapter, the possible addition of a cosmological constant Λ that would 
imply a modified Relation 4.4a : ∂αΓµν

α+Γµα
βΓνβα=Λgµν – κ (Tµν – ½δµνT). We shall return to this 

topic in Section 6.2.  
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 Limiting the discussion to cases where the contribution of p is negligible, we 
find again to leading order that all coordinates cancel apart for T44=ρ. The trace is 
therefore also equal to ρ. Replacing in 4.4a, ∂αΓ44

α+Γ4α
βΓ4β

α= – κρ/2 and, 
neglecting as before the derivatives with respect to time, ∂α∂αg44=κρ which is 
Newton’s law, ∆g44=8πGρ, namely ∆Φ=4πGρ. This justifies the normalization 
chosen in the definition of κ.  
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5. A homogeneous and isotropic Universe 
Robertson-Walker metric and Friedman equations 

 
 5.1 The cosmological principle 
 The evidence that the Universe was isotropic some 400 000 years after the 
big bang, obtained from the uniformity of the CMB temperature over the sky, is 
quite good. The accuracy is at a few per mil level, limited by our precise 
knowledge of the movement of the solar system with respect to the CMB. In fact 
COBE and WMAP data have been used to infer this movement and, after 
subtraction, the uniformity of the CMB is at the few 10–6 level; but one might 
argue that there exists an asymmetry of the Universe conspiring with this 
movement. Also, the counting of galaxies gives a uniform result across the sky, 
even if the presence of the Milky Way prevents a full survey to be made. Here, one 
has to be careful to account for distance; otherwise one could only conclude that 
the Universe is locally isotropic. A valuable statement can only rely on the survey 
of very distant galaxies.  
 Of course, we are only talking here about the Universe at very large 
distances, we know pretty well, just looking around us, that the Universe is far 
from looking as a homogeneous and isotropic fluid. How far do we have to go? in 
fact one finds large scale structures nearly up to the horizon, namely on the Gpc 
scale, with walls, filaments and voids.  
 It is sometimes said and written, erroneously, that, since Copernicus time, 
we know that there is no privileged place in the Universe. This is wrong of course. 
What we know, is that we, the Earth, the solar system, the Milky Way, do not 
occupy a privileged place in the Universe. But the Sun surely does in the solar 
system, and SgrA* surely does in the Milky Way.  
 A serious limitation on our ability to judge of the isotropy and homogeneity 
of the Universe is the fact that our view of it is only partial: we do not know what 
is going on behind the horizon. In fact the precise meaning that should be given to 
this sentence depends on the cosmological model we have in mind, we’ll come 
back to this later. Current ideas about the very early inflatory evolution of the 
Universe imply that we can see only a minute fraction of it. It is therefore 
conceivable that there exists some centre of the Universe some 100 or so horizons 
away from us or, if you do not like the idea of a centre for some philosophical 
reason, the Universe might have some kind of periodic structure on a similar scale: 
we would not have noticed it. I am not claiming that these are hypotheses to 
consider seriously, I am just protecting the students from too blind an adhesion to 
the official dogma. 
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 Moreover, it is clear that there does exist a privileged frame, that in which, 
on average, all galaxies are at rest. This statement should not be disposed of too 
lightly; it is in fact quite troublesome and not well understood. It has fed the 
reflection of many cosmologists, such as Einstein and Wheeler, without ever 
finding a satisfactory answer. It is sometimes referred to as Mach’s principle (but it 
is in fact Einstein who gave it this name). The simplest illustration is to think of 
two elastic bodies having cylindrical symmetries around a same z axis, in rotation 
with respect to each other, far from each other and far from any other body. One of 
these is flattened along the z axis (stretched normally to it) and the other is not. We 
would say that the first one is distorted under the influence of the centrifugal force 
and that the other is at rest. But there is no way to privilege one frame with respect 
to the other unless we refer them to something else, something external to the 
system, in that case very distant galaxies. I am afraid that if one is not troubled by 
this statement, one has not really understood it. It implies that the inertial 
properties of the bodies considered here depend on the gravitational action of 
distant galaxies; it is closely related to the equality of the inertial and gravitational 
masses. It also implies that we cannot think of a space containing only the two 
bodies in question, namely one cannot ignore the rest of the Universe. If one could 
the principle of relativity would be violated unless the two fluids would behave in 
the same way whatever their relative rotation. General relativity forces us to think 
of space as generated by what it contains, not as a frame that might be empty of 
energy. It surely sheds a new light on Mach’s principle but one cannot say that it 
fully answers the questions raised.  
 Anyhow, it is generally assumed, as a working hypothesis, that the Universe 
is isotropic and homogeneous. There is surely no evidence to the contrary, at least 
locally at the Gpc scale, but it is important not to erect this statement into a dogma 
and to keep one’s eyes open for possible deviations. This hypothesis is usually 
referred to as the cosmological principle, a very bad name indeed. It is just one 
hypothesis among others, and one of the least solid. 
  
 5.2 The Friedmann-Robertson-Walker (FRW) metric 
 Under such an assumption the energy momentum tensor takes a remarkably 
simple form. As the pressure and energy density must be independent of space, 
there are just two time dependent quantities that describe the Universe. Through 
Einstein equations, this implies that, at any time, its metric is completely defined 
by two numbers. On the basis of group-theoretical arguments, independently, 
Robertson and Walker have given its form as 
 ds2=dt2–dl2 where dl2=a2(t){dχ2+σ2(χ)[dθ2+sin2θdφ2]} 
and Einstein equations take the form of Friedmann equations that relate the energy 
density and the pressure to da/adt and d2a/adt2.  
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 Before pursuing, let us study the metric of simple curved spaces. In the same 
way as we can think of a sphere in a three dimensional space as a curved two 
dimensional surface, we can think of a hypersphere in a four dimensional space as 
a curved three dimensional volume. Its equation reads x1

2+x2
2+x3

2+x4
2= ± a2. Here 

the ± sign is to include hyperhyperboloids as well as hyperspheres in our 
discussion. Writing r2=x1

2+x2
2+x3

2, x4
2=± a2–r2 but, on the hypervolume, 

rdr+x4dx4=0. Hence dx4
2= (rdr)2/x4

2= (rdr)2/(± a2–r2) and, using polar coordinates 
in the space (x1, x2, x3),   dl2=dr2+r2dθ2+r2sin2θdφ2+r2dr2/(± a2–r2). It is convenient 
to write r=aσ(χ) with σ(χ)=sinχ for the + sign and sinhχ for the – sign.  
Then dr2+r2dr2/(±a2–r2)= dr2(±a2)/(± a2–r2)=a2dχ2cos2χ a2/(a2 cos2χ)=a2dχ2 in the 
+ case and  =a2dχ2cosh2χ(–a2)(–a2cosh2χ)=a2dχ2 in the – case. Hence 
dl2=a2{dχ2+σ2(χ)[dθ2+sin2θdφ2]}. In case of a flat space the metric is simply 
dr2+r2[dθ2+sin2θdφ2]: a is an irrelevant scale and, calling r=χ,  σ(χ)=χ. 
  We may therefore write the metric as either of two ways 
 

dla
2=a2 { dr2/(1–kr2)+r2[dθ2+sin2θdφ2]}    (5.1a) 

dla
2=a2 {dχ2+σ2(χ)[dθ2+sin2θdφ2]}    (5.1b) 

 
where a defines the scale. One must distinguish between three cases: k=0 and 
σ(χ)=χ corresponds to a flat space; k=1 and σ(χ)=sinχ corresponds to a closed 
space; k=–1 and σ(χ)=sinhχ corresponds to an open space. Parameter k is the 
Riemann curvature of the space. 
 The FRW metric is simply  

ds2=dt2–dl2
a(t)     (5.2) 

 
namely the metric of special relativity that has been extended by accepting a 
possible space curvature (three possibilities) and introducing a space dependent 
scale a(t). 
 An object having fixed χ, θ and φ coordinates has its movements fully 
defined by the time dependence of the scale a(t). Its x1, x2 and x3 coordinates at 
time t are simply what they were at time t0 multiplied by the scale factor a(t)/a(t0). 
One speaks of a comoving frame and of comoving coordinates. In a comoving 
frame, stars and galaxies are usually not at rest but have proper movements, 
sometimes called peculiar movements, with relative velocities with respect to each 
other at the typical scale of a permil of the light velocity. At such a level relativistic 
corrections are small and, for many purposes, can be ignored. The time dependence 
of the metric, here of a(t), is – as we have seen when studying Einstein equations – 
related to the gravity field. It is a linear scaling, expansion or contraction. 
Neglecting peculiar movements, light traveling from a galaxy to another is simply 
obtained by writing ds=0 in the FRW metric, namely, taking one galaxy at the 
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origin of coordinates, and noting that the other galaxy moves along the line of sight 
dθ=dφ=0, we find dt=dla(t) =a(t)dχ giving  
 

χ=∫dt/a(t)    (5.3) 
 

where the integral is from the time of emission of the light signal to its time of 
reception (measured by an observer having fixed comoving coordinates, a so-
called fundamental observer, one speaks of world time). χ is called the distance 
parameter, it is the time taken by light to go from one galaxy to another, both of 
them being fixed in the comoving frame. The distance a(t0)σ(χ), namely the 
distance measured in the comoving frame at time t0, is called the cosmological 
distance.  
 Let galaxy G0 emit a signal of frequency ν0 between world time t0 and world 
time t0+dt0 and galaxy G1 receive the signal as having frequency ν1 between world 
time t1 and world time t1+dt1. Obviously ν0 dt0=ν1 dt1 (the number of clock beats is 
conserved). In terms of wavelength λ=1/ν, we find 
 

 z=(λ0 –λ1)/λ1= dt0/dt1 –1= a(t0)/a(t1) –1   (5.4) 
 
This important relation defines the measured red shift parameter z. We see that 1+z 
is a direct measure of the expansion. 
 Each time one talks about a distance, one has to specify what is meant, 
namely what is measured. An important relation is between distance and apparent 
luminosity. The apparent luminosity is proportional to  
 

L0 [a0 σ(χ)]–2[1+z]–2    (5.5) 
 
where L0 is the luminosity at time of emission. The first factor represents the 
dilution of radiation, namely the decrease in solid angle; in the second red shift 
factor one (1+z) accounts for the decrease in energy per photon received, the other 
for the lesser number of photons received per unit of time, a consequence of the 
apparent slowing down of clocks. 
 
 5.3 Friedmann equations  
 As the evolution of a homogeneous and isotropic Universe is fully described 
by the time dependence of its scale (there are no peculiar movements), we should 
not be too surprised that an elementary Newtonian treatment of the problem gives 
the same result as a rigorous application of Einstein equations. This is the road that 
I chose to follow here, in the hope that, from a didactic point of view, it will leave 
a very simple picture in the mind of the students. What follows in this section can 
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be understood by anyone having some very rudimentary knowledge of physics. I 
hope that, when it is read in the light of what precedes, the offence it makes to 
rigor can be excused. 
 A well known property of any field of force inversely proportional to 
distance10 is that in a spherically symmetric medium (such a medium has therefore 
a centre, O) the force acting on a mass at distance r from O is directed toward O 
and is the same as if all the mass contained inside the sphere of centre O and radius 
r was concentrated in O. Namely the action of all matter external to this sphere 
cancels. Birkhoff’s theorem extends the validity of this result to general relativity. 
  Consider now a homogeneous sphere of radius R, density ρ and mass 
M=(4π/3)ρR3. A mass at its surface is given some outward radial velocity. Energy 
momentum conservation gives at any r>R where the mass has velocity V(r): 

2GM/r– V2(r)=K, K being a constant. From V2(r) =2GM/r−K we see that for 
K<0 we can calculate V up to r=∞ where V=√−K . The mass µ escapes the gravity 
of the sphere. For K>0 there is a distance rmax= 2GM/K where V=0 and beyond 
which the mass falls back onto the sphere. In between, for K=0, the mass just 
escapes and, at any r, its velocity is equal to the escape velocity11 at that r,  
Vesc(r)=√(2GM/r).   

Imagine now that the sphere expands or contracts in such a way that the 
mass remains always just above its surface R=r. This does not modify in any way 
the movement of the mass since the sphere acts on it as if all its mass were 
concentrated at its centre. But, now, the mass is at rest with respect to the surface 
of the sphere. The sphere radius and the sphere density now depend on time, the 
density like 1/R3. The expansion, or contraction, of the sphere preserves its 
homogeneity. It is convenient to think of a comoving reference frame attached to 
the sphere and having a unit length a(t) on each of the three axes, that expands or 
contracts as the sphere does. A point of the sphere having fixed comoving 
coordinates (x,y,z) has therefore ordinary coordinates r=(x a(t), y a(t), z a(t)) and a 
velocity V=(x da/dt, y da/dt, z da/dt), namely V=H(t)r with H(t)=da/adt. Here H(t) 
is called the Hubble constant (constant with respect to r, but possibly t dependent!). 
The distance between any two points and its time derivative are proportional to 
each other.  

                                                           
10 This is only true in three dimensions, it happens because the forces generated by the two 
pieces of a spherical shell seen under a solid angle ω are equal (same ratio of the area of the shell 
to the distance squared, same thickness of the shell, same angle with respect to the line of sight). 
In one or two dimensions it is no longer true. Inside a two-dimensional disk or a one-dimensional 
filament, one is attracted by the boundaries of the object and one cannot escape it. 
11 Black holes correspond to the situation where the escape velocity reaches the light velocity, 
namely where the radius of the sphere does not exceed RSchwarzschild=2GM, the Schwarzschild 
radius.   
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We now evaluate the forces acting on a mass µ located inside the sphere, at a 
distance λr from its centre, λ<1 constant with time. Energy momentum 
conservation reads 2GMλ3/(λr)–(λV)2=0= λ2(2GM/r–V2)=λ2K. Thus, for any point 
inside the sphere, any increase of its gravitational potential is exactly compensated 
by a decrease of its kinetic energy, it is therefore at rest in the comoving frame. Its 
K value is simply λ2K. This implies that we do not need to keep the sphere together 
by some magic additional force, all points of the sphere move precisely as they 
should to satisfy Newton dynamics. We have therefore found the movement of a 
spherical homogeneous medium under its own gravity.  

The last step is to let the sphere radius become very large compared to the 
size of the volume of the medium we wish to consider in its interior. As we may 
add as much material as we wish outside the sphere as long as it remains 
spherically symmetric, this is not a problem. The remarkable property of Hubble 
relation to be obeyed at any point if it is obeyed at one point will make the centre 
of the sphere become irrelevant in the limited space that we consider. Rewriting 
energy momentum conservation in terms of the time dependent (but space 
independent!) density ρ(t) gives (8/3)πGρr2–V2=K with V=Hr. As it is obeyed for 
any r, it is sufficient to write it down for the scale parameter a(t) that describes the 
movement completely. Replacing da/adt by H(t) and dividing by a2 we find 

 
H2=(8/3)πGρ–K/a2   (5.6a)                     

         H=da/adt               (5.6b) 
 
 These two equations summarize completely the movement of an infinite 
homogeneous medium under the action of its own gravity. Here a, ρ and H are 
time dependent but space independent, while K is time independent but depends on 
the choice of scale12. Depending on its sign, the medium will either infinitely 
expand (if K<0 ) or contract after having somewhat expanded (if K>0 ). The 
limiting case, (K=0 ), corresponds to what is called the critical density,  
 

ρcrit =3H2/8πG   (5.6c) 
 

 A medium having a density greater than the critical density will stop 
expanding and contract at some point (ending up in what is called a “big crunch”) 
while a medium having a density inferior or equal to the critical density will 
expand for ever. We may rewrite (5.6a) as K/a2=H2 ρ/ρcrit −H2, namely 
                                                           
12 Indeed, there is arbitrariness in choosing the scale: we may choose it as we wish, K will simply 
scale with a2. Do not be misled by this assertion: of course, K, which is time independent, does 
not scale as a2 as a function of time! What it means is that choosing a scale a’=λa , with λ 
constant in time, implies having K’= λ2K.  
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K/a2= H2(Ω−1)   (5.6d)  
 Ω= ρ/ρcrit              (5.6e) 

                                  
  Finally we may write the so called “force equation” stating that the 
acceleration dV/dt=−(4/3) G πr3ρ/r2, namely13  
 

d2a/dt2=−(4/3)πGρa      (5.6f) 
                                                                               

All we need to do to obtain Friedmann equations is to redefine ρ as the 
energy density rather than the mass density, which is very natural in view of the 
arguments developed in chapter 3. However, Equation 5.6f (that is essentially the 
derivative of the 5.6a) takes a slightly different form in the case of a radiation 
dominated Universe. To see this let us consider a Universe made of photons. The 
wavelength of a given photon expands as a(t), namely its frequency, or 
equivalently energy, decreases like 1/a(t), a consequence14 of relation 5.4. The 
energy density, instead of decreasing as 1/a3(t) as in the matter-dominated case 
(describing the decrease of the number of photons per unit volume), decreases now 
as 1/a4(t) as the energy per photon decreases as 1/a(t). Photons are of course not at 
rest in the comoving frame, in fact they fly at speed of light!  

Consider a volume V containing an energy ρV, say a small cylinder of length 
l and cross-section S. Change l by dl. The photons exert a pressure p on the 
cylinder, namely a force pS that makes a work pSdl=–pdV and that must 
compensate the change in energy dE=d(ρV), namely d(ρV)+pdV=0. Quite 
generally we have therefore d(ρa3)/da=–pd(a3)/da=–3pa2, namely, for photons that 
have d(ρa4)=0, ad(ρa3)/da=– ρa3=–3pa3. Photons exert therefore a pressure p=ρ/3 
that needs to be taken into account in the force equation.  

In general by differentiating the second equation with respect to time we get: 
2VdV/dt=(8/3)πGd(ρa2)/dt,  namely d2a/adt2=(4/3)πG(d(ρa2)/dt)/(ada/dt). 
As d(ρa3)/da=–3pa2, ad(ρa2)/da+ρa2=–3pa2 and d(ρa2)/dt=–(ρ+3p)(ada/dt).  

Replacing in the former equation we get 
  

d2a/adt2=(–4/3)πG(ρ+3p)       (5.6g) 
              

                                                           
13There is no new information in this force equation. Indeed it is simply obtained by 
differentiating the energy momentum conservation relation with respect to time: d{(8/3)πGρa2–
(da/dt)2}/dt=0, 2 da/dt d2a/dt2=(8/3)πGd(ρa2)/dt and, as d(ρa3)/dt=0, ad(ρa2)/dt=– ρa2da/dt 
namely  d2a/dt2=–(4/3)πGρa. 
14 Note that the relativistic expression for the Doppler shift is 1+z=√{(1+β)/(1–β)}. But this is 
irrelevant here. 
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which is the relativistic form of the force equation. Here p=0 for a matter 
dominated Universe and p=ρ/3 for a radiation dominated Universe. In general the 
relation between p and ρ is called the equation of state and is written in the form 
p=wρ. 

The deceleration parameter is defined as  
 

 q = –d2a/adt2/H2 = Ω/2+3p/(2ρcrit)       (5.6h) 
                                                       
namely a flat, matter-dominated Universe decelerates with q=1/2. 
 

We may now rewrite Friedmann equations 5.6 in their general form15: 
 

H2(t)=(da/a(t)dt)2=(8/3)πGρ(t)–k/a2(t)   (5.7a) 
       k/a2(t)=H2(t){Ω(t)–1}, Ω(t)=ρ(t)/ρcrit(t), ρcrit(t)=3H2(t)/(8πG) (5.7b) 

d2a/a(t)dt2= –(4πG/3) (ρ(t)+3p(t))         (5.7c) 
 q= Ω(t)/2+3p(t)/(2ρcrit(t))    (5.7d) 

 
 The very same equations would have been obtained by going through the 
Einstein equations. The kindergarten treatment that was followed here provides a 
remarkably simple picture of what is going on. However, one should not be 
mislead by this simplicity and ignore the subtle difficulties, inherent to gravity, 
which have been pointed out earlier.  
 Note that the Hubble relation that describes expansion allows for relative 
velocities to exceed the light velocity. One may find it disturbing but we must 
remember that special relativity is no longer valid; it has become only a local 
approximation. As we shall see below the distance where this happens is called the 
event horizon, RH=1/H. Obviously, RH is the Schwarzschild radius of a flat 
Universe contained within the event horizon (the velocity being precisely equal to 
the escape velocity). One may say, from that point of view, that we are living in a 
black hole! But the concept of black hole came about in the context of a 
Schwarzschild metric, not of a FRW metric! In the case of a flat matter dominated 
Universe, as ours is today, multiplying 5.7a by RH

3 gives RH=2GMH where MH is 
the mass contained within the horizon. The integral of the kinetic energy is 
TH=0.3MH. This is at the scale of the gravitational energy contained in such a 
Universe, GMH

2/RH=0.5MH. One should not take this kind of oversimplified 

                                                           
15 The more general form includes a cosmological constant Λ which adds to 8πGρ(t) in 5.7a. 
While the presence of such a constant is favoured by presently available data, we set it to zero 
for the time being; we will return to that point later. 
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arithmetic too seriously but it shows that one should not be surprised when one 
finds relations of such kinds. 
 
 5.4 Evolution of a flat Universe 

 For a flat Universe (which is the case of 
ours today) da/dt={(8/3)πGρ}1/2a. As ρ is 
inversely proportional to a3 for a matter 
dominated Universe and to a4 for a radiation 
dominated Universe, da/dt is inversely 
proportional to a1/2 and a respectively, 
implying that a varies as t2/3 and t1/2 
respectively (Figure 5.1).  Correspondingly 
V(t) varies as t–1/3 and t–1/2 respectively. 

Scale 
parameter
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D 

F  
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From Friedmann equation,  
k/a2(t)=H2(t){Ω(t)–1},or k=V 2(t){Ω(t)–1}, 
we see that Ω(t)–1 must decrease as fast as  
V–2(t) when t decreases and therefore Ω must 
become closer and closer to 1. In fact, as we know that today Ω is very close t
we can infer that at GUT time16 Ω must equal 1 to an accuracy of 49 decim
This is sometime referred to as the “flatness problem” because in models (claim
of course to describe the initial conditions at GUT times) that do not imply f
first principles that Ω is exactly 1 it would be very difficult to fine tune it to su
precision.  

Figure 5.1Time evolution of the scale 

 The table below summarizes the evolution of the main parameter
the Universe. The last entry, temperature, deserves some explanation. 

 
Parameter Matter dominated Radiation dominate
Pressure p 0 ρ/3 

Energy density ρ t–2 t-2

Expansion scale a t2/3 t1/2

Expansion velocity V t –1/3 t –1/2

Hubble constant H  t –1  t –1

Temperature t –2/3 t –1/2

  

                                                           
16 Grand Unification Theories (GUT) try to unify the strong force and the electroweak f
both of which are effective forces described in the standard model of elementary particles,
unified way implying a group symmetry higher than SU(3)×SU(2)×U(1). From the extrapola
of the effective coupling constants it is possible to infer that such unification should occur i
energy range at the level of a percent of the Planck mass. 
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We know that the cosmic microwave background has a black body spectrum 
with an energy density (E=hν) 

dρ/dν = 8πhν3/(exp[hν/kBT]–1) , or, writing   x= hν/kBT ,  
dρ/dx = 8πhx3(kBT/h)4/(ex–1). As ρ is proportional to T4 and to a–4, the temperature 
is therefore inversely proportional to a, namely proportional to t–1/2and t–2/3 in a 
radiation dominated and matter dominated Universe respectively. 
Note that in both matter and radiation dominated era ρt3 is proportional to t: the 
mass of the Universe contained in the horizon scales with the age of the Universe. 
Knowing how the parameters of the (flat) Universe evolve with time makes it 
possible to infer the age of the Universe, t0, from the knowledge of its present state, 
H0=H(t0). Neglecting the radiation dominated period we have: 
a(t)=a(t0)(t/ t0)2/3, da/dt=(2/3)a(t0)(t/ t0)–1/3 /t0 =(2/3)a(t)/t 
Namely, H(t)=da/adt=2/3t and t0=2T0/3 = 2/(3H0) where we have introduced the 
so-called “Hubble age”, T0=a(t0)/(da(t0)/dt)=1/H0 . 

  
    

r
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Figure 5.2 
 

A schematic illustration of the 
evolution of the Universe 

Plugging in the currently accepted value of the Hubble constant, 
71 km/s/Mpc, gives an age of only 9.2 billion years. In fact the best current 
estimate of tnow is 13.7±0.2 billion years (WMAP), as obtained from a more 
ealistic account of what the Universe is made of (including dark energy, see 
elow). It happens to be nearly equal to T0. 

 
 5.5 Horizons and the causality problem 

For two points to be causally connected at time t their distance d(t) must not 
exceed the “horizon” defined as the distance spanned by light during that time, 
namely t (c=1). But for some time t'<t these two points must have been causally 
disconnected. In the matter dominated era it happened when  
d(t')=(t'/t)2/3d(t)=t', or  d(t)/t=(t'/t)1/3,   t'=t(d(t)/t)3
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Similarly in the radiation dominated era we get   t'=t(d(t)/t)2 

This implies that the sky that we see today was in fact causally disconnected 
at some earlier time. Then how can it be that it is so homogeneous? Even if two 
causally disconnected regions can always be linked by a chain of causally 
connected regions, one should be bothered by this situation that is usually referred 
to as the “causality problem” or “horizon problem”. Rather than thinking of 
causally disconnected regions, one should rather think of the relative gradient 
describing the space variation of some quantity, say the temperature T of a plasma 
in thermal equilibrium: dT/Tdl. It is this quantity that is expected to be constrained 
to be ≥ 1/Λ, Λ being the horizon. 
 The horizon we are talking about here is sometimes called the particle 
horizon. One also refers in other circumstances to what is called the event horizon. 
It is defined as the distance where the Hubble velocity reaches the light velocity, 
that is precisely the Hubble time T0 . As we have seen, in the case of our present 
Universe, both horizons are nearly identical.  
   
 5.6 Inflation 

In addition to the causality and flatness problems, the standard big bang 
model must face two more difficulties: the absence of monopoles in today's 
Universe and the very large value of the product ρa4 during the early radiation 
dominated era. The first problem stems from the belief that at GUT times there 
must have been stable magnetic monopoles in such abundance that some should 
have been observed today in the very sensitive searches that have been performed. 

The second problem is that ρa4 is a constant during the radiation dominated 
era that should be obtained from first principles. But in natural units (ħ=c=1), it is 
a pure number and one would therefore expect its value to be commensurate with 
unity. However a lower limit of this quantity is obtained by considering photons 
only (the density of which is well known), yielding the result ρa4>10115. This is far 
from unity and may discourage theorists to devise a sensible model... 

It is true that none of these problems may sound dramatic when one 
remembers that anyhow theory must fail at the Planck mass (~1019 GeV) that is 
only 2 to 3 orders of magnitude above the GUT mass (>1016 GeV) and that we do 
not really know precisely what we are talking about in this region. Yet, there exists 
a model, the inflation scenario, which disposes simply of all these problems and 
has therefore become popular, indeed gaining credibility with time as its 
predictions were better and better verified by observation. It has emerged as a very 
sensible working hypothesis and is now included in the standard model of modern 
big bang cosmology. Yet, given its very conjectural nature, a hand waving 
presentation of its main features will be sufficient in the present introduction. 

 35



Let us assume that at GUT times the Universe has been for a while in a 
meta-stable state, similar to that produced by the potential invoked to describe the 
Higgs mechanism. In such a state a volume V embeds an energy ρmetaV, where ρmeta 
is the constant energy density associated with that state. We neglect any other form 
of energy density, matter or radiation. Increasing V by dV simply increases that 
energy by dE=ρmetadV, the real vacuum being taken as having zero energy density. 
As dE=–pdV this implies a uniform negative pressure, p=−ρmeta . From Friedmann 
force equation d2a/adt2=−4πG/3 (ρ+3p) we get d2a/adt2= 8/3 πG ρmeta which can 
be easily integrated as a=exp(Ht) with a really constant (both in time and in space) 
Hubble constant, H=√(8/3 πG ρmeta ). 

As ρmeta , in natural units, has dimension of (mass)4 and as the only scale at 
our disposal is the GUT scale (>1016 GeV) we expect ρmeta to be of order 1064 
GeV4. Putting numbers in gives a value H~1036s–1 for the Hubble constant. The 
inflation scenario assumes that the Universe was in such a regime from the big 
bang up to GUT time, tGUT ~10–33s. Hence HtGUT ~ 103. 

During inflation ρa4 blew up by a factor exp(4HtGUT) that we should like to 
be of the order of  10115 for the density to join smoothly to its expression in the 
subsequent radiation dominated era. This means that we should like HtGUT to be of 
the order of 0.25×115×ln10 = 66. This is easily achieved by choosing 
ρmeta

1/4=√.066 1016 GeV= 1/4 1016 GeV. The problem of the large ρa4 value is 
therefore solved. 

The flatness problem is similarly trivially solved : whatever was the value of 
Ω before inflation, it has been driven very rapidly to 1 during inflation where 
H2(Ω−1), and therefore (Ω−1) itself,  have decreased by a factor exp(−2HtGUT) of 
order 1058. 

The monopole problem also is solved because any primordial particle has 
been diluted to such an extent during inflation that the probability to detect it today 
is negligibly small. 

Last, let us consider the causality problem. What happened during inflation 
is that a small causally connected region of the Universe has been suddenly blown 
up to our presently observable Universe, solving the causality problem. The 
Universe that we see today may be but a very small fraction indeed of the whole 
Universe (whatever that means).  

The inflation scenario has the further attraction of explaining the 
inhomogeneities observed today, galaxies, clusters, etc... as resulting from 
quantum fluctuations of the inflation field that have been blown up by a factor 1029 
during inflation, leading to the density fluctuations that acted as seeds for the 
gravitational condensation of matter into galaxies.  
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6. Our Universe 
 

 6.1 A non homogeneous Universe 
 Our Universe is far from being homogeneous: most of its non relativistic 
energy is concentrated in galaxies. Does this prevent the use of a FRW metric and 
does it invalidate the conclusions of the preceding chapter?  
 In 1945, Einstein and Strauss presented arguments showing that we could 
still use the FRW metric as long as the distribution of galaxies in the Universe is 
homogeneous on a large scale. This is often referred to as the “Swiss cheese 
model” of the Universe. The argument goes as follows: 
 Consider a point mass M, say a star or 
galaxy, or even a cluster of galaxies, 
surrounded by vacuum and very distant from 
any other matter and assume that this other 
distant matter can be described as being a 
homogeneous Universe of density ρe. Consider 
a spherical bubble centered on M (Figure 6.1) 
and having a radius Rb such that 4πRb

3/3=M/ρe. 
Another way to look at it is to start with a 
perfectly homogeneous Universe and to 
condense all the matter contained in a sphere 
of radius Rb at the centre of the sphere. Inside 
the bubble one would like the Universe not to 
expand: systems that are gravitationally bound 
should stay so when the Universe expands. 
What we want inside the bubble is a Schwarzschild metric, which corresponds to a 
static, namely not expanding, Universe. Is it possible to have a Universe with such 
a hybrid metric, Schwarzschild inside the bubble and FRW outside? Einstein and 
Strauss have shown that the answer is yes. Our kindergarten treatment of 
Friedmann equations makes this result kind of obvious: all one needs to do is to 
keep the bubble growing as the Universe expands (or having a fixed radius in the 
comoving frame); we would not learn more physics by going through the 
calculation and I shall skip it. It is then easy to see that, by simply repeating the 
same game around each galaxy, or cluster of galaxy, we can describe a Universe 
equipped with a static Schwarzschild metric nearly everywhere where there are 
galaxies and retaining the FRW expansion to simply scale up the distances 
between these galaxies.  

 

ρe

M

2Rb 

Schwarzschild 

FRW 

 

Figure 6.1 The Swiss cheese model of 
Einstein and Strauss 

 This, however, may bring up more questions and problems than it is really 
answering and solving. Which prescription should we use to draw the bubbles?  
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Who decides where FRW 
applies and where 
Schwarzschild applies? 
More importantly, we 
know today that galaxies 
and clusters of galaxies are 
not at all distributed 
homogeneously in the 
Universe (Figure 6.2) but 
on two dimensional 
surfaces (the walls) that 
intersect in one 
dimensional lines (where 
major clusters of galaxies 

are found) and embed three dimensional volumes of emptiness (the voids). How 
can such a structure expand? A simple answer that comes to mind is to think of the 
two dimensional surfaces to expand, with the three dimensional empty spaces 
consequently expanding à la Hubble, namely the walls, as surfaces, being fixed in 
the comoving frame. But this would mean that the wall thicknesses do not grow 
with the expansion, contrary to Hubble relation. If this simple idea had anything to 
do with reality, a Swiss cheese metric would surely not be what we need, none of 
the assumptions that were made would apply here. We do know that this “walls 
and voids” structure has appeared with time rather than getting diluted: for the 
same reason as for a cluster of galaxies it seems that we should like a static 
Schwarzschild metric to govern the formation of a wall in the direction normal to 
the wall (to prevent it from expanding). But in the wall plane, if we do not accept 
having expansion, how can we afford having any expansion at all? The kind of 
hybrid metric one would then need would be Schwarzschild normal to the walls 
and expanding in the wall planes. It seems then that our arguments would have to 
be revised in depth and that Friedmann equations would no longer be valid. I am 
fully aware of the fact that such comments are simply bringing confusion in the 
mind of the students, but I hope that they may help in thinking critically and in 
some depth about these problems. There is no point to go through the detailed 
tensor arithmetic of FRW if one does not know how to answer such basic 
questions. Indeed, these issues, today, are quite controversial and some authors 
claim that dark energy could simply be the result of accepting too blindly that 
FRW applies to our Universe today. An argument (weak I must say) that they bring 

Figure 6.2 The wall and void structure of the Universe at large scales 
showing a simulation (left) compared to real data (right) 
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about is that dark energy dominance occurred more or less at the same time when 
matter condensed into structures.    
  
 6.2 Dark energy and gravity at large distances 
 Taking seriously the evidence 
provided by the analysis of  the angular 
power spectrum of the CMB that our 
Universe is flat, implies, as we have seen 
in the first chapter, that some 73% of its 
energy density is not accounted for by 
matter and radiation, whether visible or 
dark, baryonic or else. This surprising 
conclusion has received support from 
other observations, in particular from the 
fact that very distant galaxies appear 
fainter than they should, thereby 
suggesting that they are farther away than 
we estimate, namely that the expansion of 
the Universe is currently accelerating 
rather than decelerating. The 
“deceleration” parameter measured in this w
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Figure 6.3 Evidence for the fainter appearance of very 
distant galaxies. 
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    The WMAP global analysis gives w= –0.93± 0.06 while from q=−0.67±0.25 
quoted above we get w=–0.78±0.16. The dark energy “equation of state” is 
therefore found consistent with that given by a cosmological constant Λ, w=–1. 
While not much else is known of this so-called “dark energy”, it is, together with 
inflation, the recent addition to the standard big bang model that makes it become 
the current standard model of cosmology, often called the “concordance model”. It 
is consensually used by most cosmologists and astrophysicists as a convenient 
phenomenology to describe the evolution of the Universe on the road to a better 
understanding of its nature.  

A cosmological constant would describe a repulsive force that would 
increase linearly with distance as Λr. It was first introduced by Einstein in order to 
allow for a static solution of his equations applied to a homogeneous Universe, 
which is not possible otherwise (at that time one did not know about the expansion 
of the Universe, it was before Hubble's work). Adding a cosmological constant is 
like adding a constant term to the energy density, ρΛ=Λ/8πG corresponding to a 
constant negative pressure, pΛ= –ρΛ . Namely work has to be done on the Universe 
in order to contract it: it corresponds to a repulsive potential which increases with 
distance in proportion to its square and its effects are therefore the more important 
the larger the distance. As the Universe seems to have become dark energy 
dominated only recently, we see that the problem of understanding dark energy is a 
problem of understanding gravity at very large distances.  

The inclusion of a cosmological constant in Einstein equations, while 
perfectly acceptable from a mathematical view point, is not very satisfactory from 
a physics point of view because what is required to describe dark energy is 
something like 10–120 in natural Planck units instead of something commensurate 
with unity if the it had anything to do with the zero point energy of vacuum! 
Which physics would it be hiding then? This is why, despite its success at 
describing the Universe as we know it today, it is usually not accepted as a 
welcome answer to the problem. Whatever will ultimately be accepted as a 
satisfactory solution, it is clear that we should be prepared to major revisions of our 
understanding of gravity above Gpc distances. 

 
 6.3 Quantization of gravity 
 A well known limitation of general relativity, or for that matter of any 
macroscopic theory of gravity, occurs at microscopic scales. Consider a wave 
packet having an energy spread ∆E and dimension R=∆t=1/∆E (such that they 
satisfy Heisenberg uncertainty relations). The maximum value that the 
gravitational energy, ~ GM2/R, can take is ∆E, in which case GM2=1. For masses 
higher than the Planck mass, MPlanck=1/√G ~1019 GeV, the gravitational energy 
exceeds the energy spread of the wave packet and our theories must therefore be 
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revisited. The length and time associated with the Planck mass are 1/MPlanck=√G 
namely a Planck length of 2 10–33 cm and a Planck time of 6 10 –44 s. Note that the 
Schwarzschild radius of the Planck mass is 2MPlanckG=2√G namely twice the 
Planck time: like the visible universe and the horizons of various black holes, the 
Planck regime stands on the Schwarzschild line of Figure 1.9. Indeed, setting G=1 
to extend our definition of natural units, the three Planck quantities, mass, length 
and time are equal to unity. 
 Supersymmetry, a fundamental symmetry that transforms bosons into 
fermions and goes a long way toward the resolution of the problems related to the 
generation of masses in particle theory, has open the way to a possible quantization 
of gravity. Indeed, its fundamental commutators imply the momentum operator 
and gauging the theory generates a gravity field. However, such supergravity 
theories are not renormalizable. Their expression in the framework of string 
theories, on the contrary, seems to be not only renormalizable but even finite. 
Strings live at the Planck scale in a high dimensionality space à la Kaluza-Klein, 
all space dimensions but three being compactified, namely curled onto themselves, 
again at the Planck scale. Superstrings seem to generate this way a ten-dimensional 
quantum gravity. If these views were confirmed – we are still a long way away 
from that state – general relativity would not need to be quantized: it would indeed 
be the macroscopic effective expression of a quantum theory.  
  
 6.4 Some tests of general relativity 
 Possible deviations from general relativity are measured from a systematic 
global analysis of all existing relevant measurements. They are summarized by 
only two parameters, which compare the measurements to the predictions of 
general relativity. One is for the difference between the Euclidian metric and the 
general relativity metric, the other for non-linearities of general relativity gravity. 
They are found not to exceed 2 10–3 and 10–3 respectively. The most accurate radio 
measurement of the deviation of photons by the Sun yields an accuracy of only 1% 
on the first of these two parameters. The three most constraining measurements use 
laser reflectors on the Moon, radar echoes from the Viking station on Mars and a 
global analysis of the dynamics of the solar system including, in particular, the 
advance of the planetary perihelions.    
 There is today overwhelming evidence that black holes are present in the 
Universe, both stellar black holes having typical masses of a few solar masses and 
galactic black holes. The masses of the latter cover a very broad range. That at the 
centre of the Milky Way is the object of intense studies and has a mass of 30 
million solar masses. A series of pictures is shown in the appendix, summarizing 
our knowledge of its properties. They make up an amazing collection of recent 
data of outstanding quality illustrating in a spectacular way the progress made: it is 
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not so long ago that many astrophysicists doubted that black holes existed. The 
black holes at the center of the most active quasars may reach up to 100 billion 
solar masses. However, black hole studies do not imply accurate tests of general 
relativity. Black holes manifest themselves by events occurring just outside their 
horizon, which in most cases are not different from what would happen just outside 
any compact heavy object. Any sensible model of gravity would predict that stars 
must collapse into white dwarfs and neutron stars. Most properties of black holes 
that are specific to general relativity are difficult, when not impossible, to access 
experimentally as they occur beyond the horizon of the black hole17 and are 
therefore kind of censored to our eyes. 
 The prediction that there should exist gravitational waves produced in the 
event of a very rapid and intense modification of gravity has defeated all direct 
attempts to detect them experimentally. However binary pulsars, such as PSR 
1913+16, discovered by Russell A. Hulse and Joseph H. Taylor in 1974, are 
laboratories that have offered extremely accurate indirect checks of the existence 
of gravitational waves. Binaries made of a pulsar and of a very dense companion, 
neutron star, pulsar or black hole, are very compact and imply very intense gravity 
fields. Following their movement over several years makes it possible to reveal 
changes that are specific to general relativity. Some of these are related to the 
emission of gravity waves, such as the advance of the periastron, the gravitational 
slowing down of the pulsar rotation (on itself) and the decrease of the orbital 
frequency. These measurements have provided a test of general relativity to the 
level of 3.5 parts in thousand. Other binary pulsars, such as PSR 1534+12 
discovered in 1991 by Aleksander Wolszczan, have refined these measurements.  
 To conclude, our current ideas on gravity, be it at Gpc distances or at the 
Planck scale, are not satisfactory. General relativity, in many respects, has been 
tested to a good precision (nothing, however, in comparison to tests existing on 
special relativity or quantum mechanics). Much more fragile are the models that 
we have been using to apply it to the Universe at large distances. As was already 
said, a superstring description of the world at the Planck scale might shed light on 
the very large scale behavior of gravity, in which case general relativity would 
simply appear as a macroscopic approximation of the theory. For the time being, 
this is science fiction, but if it became true, it would be an unprecedented success: 

                                                           
17 The emission of gravitational waves during the collapse of a star is, to some extent, a test 
specific of general relativity but it is too small to be detectable. Gravitational waves emitted in 
more violent events, such as the merger of two black holes and other similar processes 
responsible for the most violent gamma ray bursts may be detectable. Some of the properties 
related to the angular momentum of black holes (Kerr black holes) may also be considered as 
providing tests specific of general relativity.  
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between the Planck scale and the size of today’s horizon there are nearly 60 orders 
of magnitude!  
 Many non-orthodox approaches exist, which I have simply ignored: they do 
not fit in the elementary presentation of the present lectures. They include, in 
particular, the possibility that the constants of physics, ħ, c and G, would slowly 
evolve with time. There exist numerous evidences against such a possibility. 
Particularly elegant are the studies of paleochroic haloes made by Wilkinson. 
These are spherical shells induced by the Bragg path of decay alpha particles 
emitted by radioactive inclusions in rocks. One should also mention three decades 
of lunar ranging measurements using a laser reflector on the Moon, placing a limit 
of 10–11 per year on the relative change of G. Other non orthodox considerations 
concern possible topological complications in the structure of the Universe and, 
more importantly, possible modifications to Newtonian mechanics (one talks of 
MOND, MOdified Newtonian Dynamics).  
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Appendix: A collection of pictures of Sagittarius A*, the black hole at 
the center of the Milky Way 
 
 The series of pictures that follows illustrate our current knowledge of Sgr 
A*. They are given here for entertainment, as a response to the fascination which 
black holes exert on our minds and as a demonstration of the extraordinary 
progress made by astrophysics in recent years. However, as was said in the 
lectures, they do not teach us much on the major questions cosmology is 
confronting us with. This is why I have chosen this mode of presentation. 
 
 Radio and microwave observations 
1. The presence of a radiosource at the centre of the Milky Way was first noticed 
by Jansky in 1932 and later resolved, in 1974, at the Green Bank radio telescope. 
2. In the visible there is nothing to be seen.  
3. Broad 90cm VLA view of the central region.  
4. Zooming in at 20cm wave length.  
5,6. Zooming in more at 6 cm wave length. Many supernova remnants have been 
identified. Star density is one million times higher than near the Sun.   Many SN 
explosions, dense star forming region. A three arm structure is revealed in Sgr A. 
7. Highest resolution VLA image, 2ly×2ly.  
8. A ring of dust (6.5ly radius) fed by dense clouds 25 to 50 ly away and three 
arms of hot gas (>10000K) spiralling toward SgrA*. From VLBA one learns that 
the diameter of the source is less than 5 light minutes, that the velocity with respect 
to the Milky Way is very low: SgrA* is “anchored” at its centre.  
9. COBE microwave view of the central region of the Milky Way. 
 
 Infrared observations 
10. Already in the near infrared, one starts to see a glow.  
11, 12. Zooming in (mid-infrared). 
13, 14, 15. Stars are observed in infrared as orbiting around a 3million solar masses 
black hole.  
16. High resolution infrared picture showing a faint flaring Sgr A*.  
 
 X ray observations 
17. CHANDRA, used to observe Sgr A* in X rays.  
18. An X ray view of the galactic centre.  
19. Superposition of a 2-8 keV Chandra picture with Naos Conica VLT mid 
infrared. Sgr A* source <1.4 arcsec in diameter, consistent with expected accretion 
disc of a 3 million solar masses black hole.  
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20. Observation of X ray flares.  
21, 22. Possible evidence for a jet normal to the galactic plane.  
23. Twenty times as many active X ray binaries as expected, suggesting that ten 
thousand stellar black holes may be orbiting Sgr A*.  
24. Four degree gamma ray (HESS) view of the galactic centre dominated by a 
SNR and SGR A*. Once these are subtracted, other sources remain, one of which 
has apparently no counterpart.  
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