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Lecture 1 

A short summary

A brief overlook and a few landmarks

The past century has seen a tremendous development in our knowledge of the world. We have learned that matter is made of atoms, themselves made of nuclei and electrons in electromagnetic interaction as described by Maxwell equations. That their energy levels are quantified, implying that quantum mechanics has to replace Newtonian mechanics, the basic quantum being the Planck constant, ħ=h/2π=8mK.ns=197MeV.fm/c with 1fm=10–13cm, the approximate proton radius, and c, the speed of light, equal to 30cm/ns. That space and time are not independent but mix according to the laws of special relativity. That each particle that is known of, has an antiparticle companion of the same mass. That the atomic nuclei are made of nucleons, protons and neutrons, themselves made of up and down quarks kept together against Coulomb repulsion by the short range strong force. That there exists another interaction in nature, the weak interaction, that is responsible in particular for the beta-decay of neutrons into protons and produces a particle of a new kind, the neutrino. That there exist many other particles, usually made of quarks (and possibly antiquarks), that may experience the electromagnetic, weak and strong interactions. That there exist bosons associated with each of these interactions, electromagnetic, strong and weak: they are called photon, weak bosons and gluons respectively. That gravitation, the fourth and last interaction which is known of, can be descried in the frame of general relativity by a distortion of space time in the vicinity of masses, however leading to inconsistencies with quantum mechanics when one approaches the Planck mass, MP=√(ħc/GN)=1.2 1019 Gev/c2=22 (g=2 1034 s–1 h/c2 (GN being the Newtonian gravitational constant), showing that quantum mechanics and general relativity cannot be the last word. That the universe was born 14 billions years ago in a “big bang” and has been expanding since then, with quarks combining into hadrons after a microsecond, becoming transparent to photons at the age of 400 thousand years and starting to gravitationally cluster into galaxies at the age of 1 billion years… 
Particle physics aims at giving a coherent picture of all of that. The ambition of the present lectures is simply to sketch it briefly.
The general frame

Modern physics describes the world starting from a single fermion and making it obey a number of symmetries; meaning that its states have a number of components which transform into each other under such symmetries. In such transformations some quantities are invariant, others transform according to well defined laws. Quantum mechanics and special relativity define the framework in which such a description is made.

Homogeneity and isotropy of space-time

A first set of symmetries are associated with the homogeneity and isotropy of space-time. They imply invariance of the laws of nature under space-time translations and rotations, the latter consisting of space rotations and proper Lorentz transformations. Translation invariance results in energy-momentum transforming as a four-vector and its norm, the mass, being invariant. Rotation invariance results in covariant spin transforming as a four-vector and its norm being again invariant.

Continuous transformations, representations, Lie groups

A transformation in space-time is associated with a transformation of the physical states in Hilbert space, the latter is called a representation of the former. They both obey the same algebra, namely the same commutation relations. The case of transformations belonging to continuous groups is of particular importance. It is then useful to deal with infinitesimal transformations leading to the introduction of infinitesimal generators. Finite transformations are obtained by exponentiation. A theorem by Wigner states that representations must be unitary, linear or antilinear. Once the commutation relations existing between the generators are known, the structure of the group of transformations and of its representations are essentially defined. One talks of Lie groups and Lie algebras.

Charge conjugation and the Dirac current

In the case of the space-time transformations mentioned above, we have the Poincaré group and its SL(2)C representation. In fact a particular feature of proper Lorentz transformations, easily made explicit in the case of massless particles, is that it implies the use of two different representations when one wishes to include parity (associated with a change of sign of the space axes). The relation between these is the Dirac equation and the two different components that it implies correspond to the existence of particle/antiparticle pairs. The two members of a same pair are related by charge conjugation. In the case of a spin1/2, one needs a two-component spinor for each member of the pair, hence the four components of Dirac spinors. The Dirac current will be seen to transform as a four-vector and will be used to construct invariants.
More symmetries make the Standard Model

Multiplication of the components will be made by introducing additional group symmetries, this time directly at the level of the Hilbert space. Such symmetries are the result of invariance under the exchange of the different components among themselves. In practice SU(2) symmetry will be introduced to describe weak isospin and SU(3) symmetry to describe color (the charge of the strong interaction) while U(1) symmetry will describe the electric charge (more correctly the hypercharge). A first flaw in the picture is apparent at this stage: two other symmetries are necessary but we do not know how to introduce them. One is the symmetry between quarks and leptons, one talks about grand unification, the other is the triplication of fermion families. Then, the picture of the world of fermions, all having spin 1/2, is complete. It includes three lepton families and three quark families. Each family consists of two members of opposite weak isospins: (electron and its neutrino, muon and its neutrino, tau and its neutrino) for the leptons, (up and down, charmed and strange, top and bottom) for the quarks. The leptons are color singlets while the quarks are color triplets. A property of the weak interaction is that it knows only about left-handed fermions (and right-handed antifermions), implying maximal parity violation. Another way to say the same thing is that left-handed fermions are weak isospin doublets while right-handed fermions are weak isospin singlets. Nothing tells us at this stage which values the masses of these particles should take, indeed they could very well be zero. In practice they cover a very broad spectrum which we do not understand: this is the second flaw that we encounter, we have only hints at its understanding (Higgs mechanism, spontaneously broken SU(2)×U(1), see later ).

Gauge invariance and gauge bosons

At this stage we said nothing about interactions between fermions, we only described free fermions; nor did we say anything about bosons and their interactions. All this will be dealt with in a single go by simply introducing a new symmetry, called gauge invariance; namely by requiring that the phases of the various components of a fermion state can be chosen as we wish at any point in space-time. Gauge invariance is not obeyed by the free fermion states; but by looking at how they transform one sees that gauge invariance can be obeyed by simply adding new bosons having well defined interactions with the fermions. These so called gauge bosons are vector bosons, meaning that they have spin one, and are massless. The gauge boson of U(1) is the photon with its electromagnetic interaction with charged fermions, that of SU(3) is the eight-component gluon with its strong interaction with colored  fermions (namely quarks) and that of SU(2) is the three-component weak boson that interacts with weak isospin. However, the latter is not massless, indeed it is very massive, around 80-90 GeV/c2.
Spontaneous symmetry breaking and the Higgs mechanism

This sounds as a new, and major, flaw in the picture; however it is elegantly solved by unifying the weak and electromagnetic sectors using a single, spontaneously broken, symmetry. This reduces the understanding of the relative strengths of weak and electromagnetic interactions as well as of the mass values of the weak bosons to the knowledge of a single parameter, the so called Weinberg angle that has been measured with great accuracy. However it also implies the existence of at least one new boson, this time a scalar, the as yet unobserved Higgs boson. Spontaneous symmetry breaking provides a natural mechanism for generating not only gauge boson masses but also fermion masses; unfortunately the theory does not tell what are the Higgs boson and fermion masses. This picture does not say either what is behind this spontaneous symmetry breaking; this is considered as a major new flaw of the theory.
Supersymmetry and new perspectives 
The Poincaré group does not exhaust possible space-time symmetries. A transformation between fermions and bosons, referred to as supersymmetry, is also possible. A few words will be said about it and about its potential ability at providing a better understanding of spontaneous symmetry breaking and, may be more importantly, at providing a description of the fourth force of nature, gravity, about which the above picture does not say anything. Considerations on this point will remain at a very elementary level.  
Particle names and masses

The tables below summarize the properties of the known elementary particles. Starting with the fermions, they fall in four main categories depending on their behavior under SU(2) and under SU(3). This is summarized in the table below. What left-handed and right-handed exactly means will be clarified in Lecture 4. For the time being it is sufficient to say that in the limit of infinite momentum right-handed fermions have their spin parallel to their momentum, while left-handed fermions have their spin anti-parallel to their momentum.
                   Behavior of fermions under SU(2) and SU(3)
	SU(2)(SU(3)

Behavior
	SU(3) color

	
	Triplet
	Singlet

	SU(2) Weak 

Isospin
	Doublet
	Left-handed quark
	Left-handed lepton

	
	Singlet
	Right-handed quark
	Right-handed lepton


In the limit of massless fermions, the distinction between the three families would be irrelevant since they would be indistinguishable. While fermions of different colors have exactly the same masses (color symmetry is exact, unbroken), fermions of different weak isospin have different masses (and hence different names). Weak isospin symmetry is broken and it is natural to associate the symmetry-breaking mechanism with the mass generation mechanism. The table below shows how this is realized in nature. It will become clear later that the quark masses are not neatly defined (their binding energies are much higher than their masses and they do not exist as free states).  

                              Fermion (spin ½) properties
	
	Charge
	Weak

Iso

spin
	First Family
	Second  Family
	Third family

	
	
	
	Name
	Symbol
	Mass
(MeV)
	Name
	Symbol
	Mass
(GeV)
	Name
	Symbol
	Mass
(GeV)

	Quarks
	+2/3
	+1/2
	Up
	u
	~3
	Charmed
	c
	1.3
	Top
	t
	174

	
	–1/3
	–1/2
	Down
	d
	~6
	Strange
	s
	0.12
	Bottom
	b
	4.2

	Leptons
	0
	+1/2
	Electron

neutrino
	νe
	?
	Muon 

neutrino
	ν(
	10–11
	Tau

Neutrino
	ν(
	10–10

	
	–1
	–1/2
	Electron
	e
	0.511
	Muon
	(
	0.106
	Tau
	(
	1.777


                                       Boson properties

There are three multiplets of vector bosons, each associated with one interaction (electromagnetic, strong and weak).

The photon, γ, is a massless singlet and couples to electric charge.

The gluon, g, is a massless color octet and couples to color.

The weak bosons are massive and include the W± (80.4 GeV) and the neutral Z (91.2 GeV). They couple to weak isospin and form a weak isospin triplet. Not quite, however: the Z is slightly different from the neutral member of this triplet and couples to the electromagnetic current as well (through the square of the sine of the Weinberg angle). This will become clear later. 

The lower limit on the mass of the lightest scalar Higgs is around 100 GeV.
The strong interaction: prequark studies

Radioactive sources and cosmic rays were the first tools of particle physics. But it is only with the availability of particle accelerators in the late forties that the understanding of the strong interaction made important progress.

Accelerators were first used in the “fixed target” mode, meaning that a beam of particles is directed onto a target with which it interacts. They are now often used in the “collider” mode, meaning that two particle beams are directed against each other to study their head-on collisions.

Primary beams are usually proton or electron beams, the only two charged stable particles abundantly available in nature, and directly obtained from ionization of hydrogen gas in the accelerator source. They may also be ion beams, implying a partial ionization followed by pre-acceleration and stripping to obtain the fully ionized ion. 

An intense primary beam directed onto a target may produce enough secondaries to collect a secondary beam having not too large a dispersion, a size and a divergence, and enriched in a given particle type. Examples are neutral beams such as neutrons, ( hyperons, neutrinos, charged hyperon beams ((, (, (), meson beams ((, K), ( beams, radioactive ion beams and, of particular importance for feeding colliders, positron and antiproton beams.  
A proton of energy E and a proton at rest have

[image: image1.wmf](

)

(

)

M

+

E

M

=

M

E

M,

+

E

=

s

ft

2

2

2

2

-

 while two protons of energies E in a head-on collisions have 
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for E>>M. Only colliders make it possible to reach very high energies, their problem is intensity in order to reach adequate “luminosities”, a concept that we now explain.

A beam of dNb/dt particles/second hitting a target (assumed broader than the beam) containing dNt/dS particles/cm2 (assumed  low enough to avoid shadowing effects) produces interactions at a rate R proportional to the “luminosity” L=dNb/dt(dNt/dS. The proportionality coefficient, ( , has dimension of an area and is called the “cross-section” of the process under study. This name is appropriate: it is indeed the apparent, or better effective, cross-section that each target particle offers to the beam for the process under study. The contribution of the detector is described by another parameter,(, called the detector acceptance, such that the detected event rate is R = (L(. The physics of the interaction is fully contained in (, the experimental conditions are fully described by (L.

Collider luminosities are in the 1030 to 1033 cm–2s–1 range, a very low value compared to fixed target experiments: a nanoampere beam hitting a 10 cm long liquid hydrogen target gives already L = 2.4x 1033 cm–2s–1.

A cross section can be defined for each possible channel, the sum over all possible channels being the total cross section. In practice a cross section is the product of a phase factor, that accounts for kinematical constraints, by the modulus squared of a transition amplitude T that connects the initial state 
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 and the final state 
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 . The latter can often be expressed perturbatively in terms of Feynman graphs.

Hadron collisions produce various secondaries, some of which were known before from cosmic rays, some of which were not. Their study shows that they can be classified according to the values taken by some quantum numbers, such as strangeness, baryon number, isospin, that appear to be conserved. In today's words, these conservation laws are simply understood in term of quarks. For example, a reaction such as 
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, giving evidence for strangeness conservation, is seen as shown on the figure. However, contrary to nuclear reactions, which are usually reducible to a rearrangement of the participating nucleons, particle interactions cannot be seen as a simple rearrangement of quarks: quark binding energies exceed quark masses by a large factor.
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Baryons (three quark states) and mesons (quark-antiquark states) have relatively long lifetimes because they are stable against the strong interaction and decay weakly ((-decay): ((n) = 887s (the very small phase-space available is responsible for this very large value), 
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 (again relatively large values due to the V–A nature of the weak decay, see below),  
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. Note that a proper lifetime (i.e. measured in the particle rest frame) of 3.10–10s at an energy E=100Mc2 (M being the mass of the particle) means a decay length of 1m.  

Hadron collisions produce also resonances, namely excited baryonic and mesonic states, which decay via the strong interaction against which they are unstable and have widths of several MeV: 
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:
( =10–10s means (=6.6 10–12 MeV and (=100 MeV means ( =6.6 10–24s, illustrating   the huge gap between stability and instability against the strong interaction. Resonances may be seen as a bump in the cross-section as a function of incident energy or in the final state, as a bump in the invariant mass distribution of their decay products.  
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Another important result of early strong interaction studies was that cross-sections are typically in the few mb range, with total cross-sections in the fm2 range; they are dominated by hadron sizes (the nucleon radius was known since long from form factors measured in electron scattering and from nuclear physics). Indeed the transverse momenta of produced secondaries were found to have exponential distributions falling with a characteristic mean value of the order of 200 MeV/c, as expected from the Fourier transform of a 1 fm radius disk. The energy scale, as given by the level spacing between different multiplets, was also in the few MeV range.
The strong interaction: quarks and color


Symmetries obeyed by the baryons and mesons (both stable particles and resonances) as a function of strangeness and isospin suggested that these particles were made of spin ½ quarks and antiquarks. There were supposed to be three kinds of quarks, u, d and s, with fractional charges (2/3, –1/3 and –1/3 respectively).
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This idea, however, met two major obstacles: first, no free quark has ever been found in spite of extensive effort to look for them, and second, states made of three identical quarks having their spins parallel to each other (J=3/2, (++=uuu, (–=ddd  and (–=sss) must have a symmetric wave function in disagreement with the Pauli principle stating that fermion states must be antisymmetric. Moreover accelerator energies had to be large enough to allow for looking into the hadrons with a high space resolution, say better than 0.1 fm or so, implying transverse momenta in excess of 2 GeV/c: only when such accelerators became available has it been possible to reveal the presence of small size constituents within the nucleon. 

The first evidence for point like scattering centers inside the nucleon was from deep inelastic electron scattering at SLAC. At large transverse momentum transfers of the electron to the nucleon, one expects the electromagnetic interaction to proceed via photon exchange with one of the quark constituents rather than with the nucleon as a whole. The angular distribution of the scattered electron or, equivalently, the momentum transfer q distribution, should then no longer be steep, because being governed by the nucleon form factor, but should be much flatter with a power law characteristic of point like scattering centers as in e–e scattering (Mott cross-section). This is exactly what was observed.
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The second breakthrough was the evidence for “color”. The idea was that each quark could exist in three different states labeled by an index associated with a new quantum number, color. This hypothesis gives an elegant solution to the problem of the ( baryons: it is sufficient to write a wave function of the form 
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, where (, ( and ( are color indices. The first evidence came from a measurement (again at SLAC) of the ratio R = ((e+e– → hadrons)/((e+e– → (+(–).
 To the extent that all produced hadrons have their source in a quark-antiquark pair created by the virtual photon one expects [image: image425.wmf](
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R/NC = (2/3)2+2(1/3)2= 2/3 below the charm threshold, where NC stands for the number of different colors. The experimental R value is indeed 2, as expected for three colors.

Another test is obtained from the decay (o → (( . The decay amplitude is multiplied by NC, the decay rate by NC2. This takes nicely care of the factor of nine disagreement that exists between the naive calculation (Nc=1) and the experimental value. Further evidence comes from the weak decay rates of ( leptons. The branching ratio ( (( → hadrons)/((( → leptons) 

should be multiplied by Nc as is indeed experimentally measured. 
The weak interaction: beta decays and charged currents

For many years, the only known manifestation of the weak interaction was ( decay. It was soon realized that it was of the form n ( pe( where the neutrino ( was indeed postulated by Pauli to explain the missing energy observed in ( decay spectra. It took some time before one was able to confirm the existence of neutrinos by making them interact in reactions such as (N ( N’e (using the neutrino flux from a nuclear reactor), and (N ( N’( (using a secondary neutrino beam from an accelerator) providing evidence at the same time for the existence of two kinds of neutrinos. Today, we know that each of the three charged leptons has its associated neutrino and that the general form of the interaction is (((’ where ( and (’ are any of the fermion doublets (u,d), (c,s), (t,b), (e,(e), ((,((), or ((,((). 
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Many different examples of ( decays have been observed. Some couple a quark doublet to a lepton doublet, as is the case for nuclear ( decay (ud( e(), and for many other hadron decays (D(Ke( meaning cs( e( or (+( (oe(, meaning ud( e(), and also hadronic ( decays (such as (((((   meaning ((( (ud, the other leptons are too light to have hadronic decays). Some couple two lepton doublets together, as muon decay ((( e(e((  ), or the leptonic ( decays,   (( ( (((( and 
(( e(e(( . Some couple two quark doublets, as D+(cd)((+(ud)Ko(sd), meaning cs( ud.
All have the property to violate parity maximally, namely to involve only left-handed fermions (and right-handed antifermions), as could be studied early and to a high precision in muon decays. To give just one classical example, let us compare the two leptonic charged pion decay modes, ((((( and (( e(e. As the only difference between the two is the different masses of the final state charged leptons, one would expect the rate of the second to be larger than the rate of the first because of the much larger available phase-space, (M(=140MeV, M(=l06MeV, Me=0.5MeV). In fact the contrary is observed, the rate of the second is much smaller than the rate of the first, by a factor 10–4. The reason is maximal parity violation: the pion has spin zero and in the pion rest frame, if the leptons were all massless, the two final state leptons would fly back to back with their spins adding up to unity, one being left-handed and the other right-handed. This is clearly impossible and these decays should be forbidden. However the final state charged leptons are not massless and the fraction of wrong sign helicities is approximately proportional to the square of their masses. Hence, a ratio of the order of Me2/M(2 between the two decay rates. An exact calculation gives the experimentally observed ratio very accurately. 
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Comparing the decay rates of the ( and ( leptons into 
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respectively gives evidence for the independence of the weak interaction on family (universality). Here, the W boson is so massive that the difference between the( and ( masses is irrelevant. In order to see effects that are sensitive to the W boson mass,  one may turn to neutrino interactions where the deep inelastic cross-section contains a factor (1+Q2 /MW 2)–2, meaning that to see a 10% effect one needs momentum transfers Q of the order or 18 GeV/c. 
[image: image428.wmf]g

Neutrino physics has been indeed a major element of progress in our understanding of the weak interaction. Not only has it given very accurate information on the ( decay process (in the case of neutrino interactions one talks of charged currents) but it has also been the place where neutral currents have been revealed for the first time. In addition to deep-inelastic neutrino scattering on quarks and antiquarks, neutrino electron scattering has also been observed. Neutrino beams are obtained from the decay products of pions and kaons produced in the interaction of a very intense primary proton beam with a thick target. Free space is fit out behind the target to allow for a sufficient decay length, followed by a very thick absorber (usually hundreds of meters of earth, as these beams are built underground). Behind the target some focalization of the secondaries is possible together with some selection of the sign of the charge, of the momentum, of the K/( ratio. As a result one can obtain beams enriched in one or the other neutrino or antineutrino family and having not too broad an energy spectrum. The very low cross-sections (the total neutrino cross-section increases in proportion to incident neutrino energy and reaches only 1 pbarn, namely l0–36cm2, at 100GeV) imply the use of very large detectors weighing several hundred tons.

The main lesson to be retained from beta decays and charged current neutrino interactions is the universality of the interaction, its independence on quark and lepton families and its V–A structure implying maximal parity violation.
The weak interaction: neutral currents
[image: image429.wmf]-

e

Searching for neutral currents has been a challenging activity for many years, in particular searching for K0 ((+(– decavs. In many channels the weak neutral current competes with the electromagnetic interaction and, if one is in a mass range well below the Z mass, it will be completely hidden by it and extremely difficult to reveal. The obvious place where to look is in neutrino interactions where there is no competition with electromagnetism. Or one needs to go to mass ranges where the Z dominates over the photon, as was done in the e+e– collider LEP. For the moment let us be satisfied by stating that neutral currents were finally seen at CERN in 1973 in a propane bubble chamber called Gargamelle. The outstanding difficulty of this observation must be underlined: in a neutral current interaction neither the incoming neutrino nor the outgoing neutrino are visible, all that can be seen is the small low energy track(s) left by the interaction of the neutrino with a nucleon or an electron; this contrasts with the nice charged current signature of a high energy lepton suddenly popping up.  

Historically, the observations of neutral currents that followed the Gargamelle discovery were low energy measurements including (see the 1983 situation in the figure below):

a) Measurements of the cross-section ratios ((( N((( X)/ ((( N((X) where N is an isoscalar target nucleus, X stands for anything and the ratio being measured both for incident neutrinos and for incident antineutrinos.
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b) The observation of neutrino scattering from electrons using muon neutrinos and antineutrinos from an accelerator beam and using electron antineutrinos from a reactor. The ratio of the (( e((( e cross-sections measured with neutrinos and antineutrinos gives a direct measure of sin2(W.
c) Experiments looking for peculiar atomic transitions where neutral currents effects are at the limit of being detectable (in particular a Cs experiment had some success). 
d) A measurement of the elastic scattering of polarized electrons from deuterium, where the electroweak interference was revealed as a left-right asymmetry of the scattered electrons. 

e) An extensive study of the production of fermion pairs in e+e– collisions at the then maximum available energy, (20GeV per beam.
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 In 1982/1983 the weak bosons were produced at CERN for the first time in proton-antiproton collisions and their decay modes could be directly studied. This was the beginning of an era of intensive studies of the weak interaction that culminated with LEP, an e+e– collider that had sufficient energy to produce the Z and even W pairs. Millions of events were studied in different channels allowing for very accurate tests of the electroweak theory. It was even possible, at a time when the top quark had not yet been discovered (from proton-antiproton collisions) to predict correctly its mass from the higher order correction terms (radiative corrections) to electroweak processes that were measured very accurately. The same approach has allowed for constraining the Higgs boson mass to within a 100 to 200 GeV window.  

The figure shows the e+e– cross-section as a function of energy with new channels opening at each threshold, usually accompanied by a resonance in the associated quark-antiquark channel. The Z peak and the opening of the W+W– channel are clearly visible.

Among the most important LEP results, one may select:

a) From the width of the Z, a limit of 3 on the number of fermion families having a neutrino lighter than 45 GeV (for the decay Z((( to be kinematically possible).

b) Accurate measurements of the decay widths and asymmetries (the Z being produced with its polarization directed along the beam) of the Z into the various possible channels.
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c) Measurement of the W+W– production cross-section. Two diagrams contribute to this process to leading order that interfere destructively, making this measurement a sensitive test of the validity of the electroweak theory.

d) Various strong interaction results obtained from the study of hadron jets of different flavors, in particular b-b pairs.

e) Accurate measurements of lepton pair productions, including a rich harvest of data on ( pairs.

f) The placing of very many constraining lower limits on the masses of new particles such as supersymmetric partners of the known fermions and gauge bosons and, of course, the Higgs boson(s). Such limits are obtained either directly (non-observation of the particle one is searching for – the production cross-section of which one is able to calculate as a function of its mass) or indirectly (radiative corrections to accurately measured processes).
Lecture 2

Space-time symmetries
Continuous transformations, Lie groups
The infinitesimal generators of space rotations obey the angular momentum commutation relations, [Jx ,Jy ]=iJz . J must be hermitian for the R=1–iθJ to be unitary. These two properties alone imply that J2 commutes with all J’s; that {J2,Jz} forms a complete set of commuting observables; that the eigenstates and eigenvalues obey J2 |jm>=j(j+1)|jm> and Jz |jm>=m|jm> with 2j integer and m taking one of the 2j+1 integer values in the interval [–j,j]; that the step operators J±=Jx±iJy transform |jm> states into |jm±1> states; that the subspace of |jm> states having a same j is globally invariant under rotations (rotation matrices); that the eigenstates and eigenvalues of J=J1+J2 are of the form |JM> such that J is an integer in the interval [|j1–j2|, j1+j2] and M an integer in the interval [-J,+J] (Clebsch-Gordan coefficients); that operators which commute with J are scalars under rotations; that operators that have with J the same commutation relations as J itself are vector under rotations.
The results obtained for angular momentum are very general. They can be extended to any group of continuous transformations having infinitesimal hermitian generators Xi obeying the algebra [Xi ,,Xj] =
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One then talks of Lie groups and Lie algebras. The 
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 are called the structure constants. Operators K( such that [K(,Xi] = 0 (i are called Casimir operators (J2 in the angular momentum case). A number r of operators H( other than K( commute with each other (and of course with K(). In the angular momentum case, r = 1, H( can be chosen to be Jz . r is the rank of the Lie algebra.

All other operators can be expressed as linear combinations of the K(, H(  and of linearly independent step operators E(  that satisfy:
 
   [K( , E( ] = 0                              angular momentum: [J2, J(] = 0
              [H( , E( ] = a( E(                        angular momentum: [Jz , J(] = (J(
implying E( | k( h( > ( | k(  h(+ a(>
         for K( | k( h( > = k( | k( h( >, H( | k( h( > = h( | k( h( > 
The representation reduces to r-dimensional multiplets. Combining multiplets implies the use of coefficients equivalent to the Clebsch-Gordan coefficients.

The commutation relations with the infinitesimal generators define the way in which operators transform. In particular [S, Xi] = 0 (i implies that S is invariant (a scalar).
Translations
Let Ta be a transformation changing a variable ( into (+a, a infinitesimal. Let G be its (hermitian) infinitesimal generator.
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Let 
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 be the observable associated with 
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and |b> be an eigenstate with eigenvalue b that transforms into |b’> with eigenvalue b+a. 
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For finite transformations       
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For a representation of G by a single real number g then 
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 is just a phase change and is an element of U(1).
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Under T the G eigenstates are simply multiplied by a phase factor. The variables g and ( are said to be conjugate. The table below summarizes their properties. We see that the generators of space-time translations are the components of the 4-momentum.

	Transformation
	Space translations
	Time translations
	Space rotations

	Generator
	Momentum 
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	Space coordinate 
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Proper Lorentz transformations, comparison with space rotations

	
[image: image49.wmf])

(

R

z

q


	
[image: image50.wmf])

(

L

z

q


	
[image: image51.wmf]ú

ú

û

ù

ê

ê

ë

é

®

®

÷

ø

ö

ç

è

æ

i

z

y

t

x

i

R

z

q



	
[image: image52.wmf]2

2

2

y

x

+

=

r


	
[image: image53.wmf]2

2

2

z

t

-

=

r


	
[image: image54.wmf]2

2

2

z

t

-

=

r



	
[image: image55.wmf]r

r

=

¢


	
[image: image56.wmf]r

r

=

¢


	
[image: image57.wmf]r

r

=

¢



	
[image: image58.wmf]î

í

ì

+

=

¢

-

=

¢

q

q

q

q

cos

y

sin

x

y

sin

y

cos

x

x


	
[image: image59.wmf]î

í

ì

+

=

¢

+

=

¢

q

q

q

q

ch

z

sh

t

z

sh

z

ch

t

t


	
[image: image60.wmf](

)

ï

î

ï

í

ì

+

=

¢

+

=

¢

q

q

q

q

ch

z

sh

t

z

i

sh

z

ch

t

t

1



	
[image: image61.wmf]y

i

x

±

=

±

r


	
[image: image62.wmf]z

t

±

=

±

r


	
[image: image63.wmf]z

t

±

=

±

r



	
[image: image64.wmf])

(

¢

=

=

-

+

-

+

r

r

r

r

r

2


	
[image: image65.wmf])

(

¢

=

=

-

+

-

+

r

r

r

r

r

2


	
[image: image66.wmf])

(

¢

=

=

-

+

-

+

r

r

r

r

r

2



	
[image: image67.wmf]q

r

r

i

e

)

(

±

±

±

=

¢


	
[image: image68.wmf]q

r

r

±

±

±

=

¢

e

)

(


	
[image: image69.wmf]q

r

r

±

±

±

=

¢

e

)

(



	
[image: image70.wmf]q

r

r

r

r

i

e

2

÷

÷

ø

ö

ç

ç

è

æ

=

¢

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

+


	
[image: image71.wmf]q

r

r

r

r

2

e

÷

÷

ø

ö

ç

ç

è

æ

=

¢

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

+


	
[image: image72.wmf]q

r

r

r

r

2

e

÷

÷

ø

ö

ç

ç

è

æ

=

¢

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

+



	
[image: image73.wmf])

x

y

(tan

e

i

=

=

-

+

a

r

r

a

2


	
[image: image74.wmf])

t

z

th

(

e

=

=

-

+

a

r

r

a

2


	

	
[image: image75.wmf]y

i

x

y

i

x

log

i

-

+

=

2

1

a


	
[image: image76.wmf]z

t

z

t

log

-

+

=

2

1

a


	
[image: image77.wmf]ú

û

ù

ê

ë

é

®

i

a

a



	
[image: image78.wmf]q

a

a

+

=

¢


	
[image: image79.wmf]q

a

a

+

=

¢


	
[image: image80.wmf]b

q

=

th




[image: image433.wmf]1

q

[image: image434.wmf]3


The variable α is called rapidity and is very commonly used in the study of high energy reactions. It is only shifted by a fixed amount under a Lorentz boost. In the 

limit of massless particles it becomes a purely angular variable, – ln(tanθ/2).
 A closer look at Lorentz boosts: Weyl spinors
The generators of space-time transformations, including the generators K of proper Lorentz transformations, obey the following commutation relations: 

	
	Jx
	Jy
	Jz
	Kx
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	E
	Px
	Py
	Pz
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Not only 
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 is not hermitian but it does not obey the angular momentum commutation relations: [Kx, Ky]=–iJz and not iKz . To make the parallelism between 
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 obeys the angular momentum algebra. This makes explicit the extension to an angular momentum algebra including imaginary rotations.

As 
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In the first representation (the (’s are the Pauli matrices) [image: image96.wmf]J
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i

r

 are equal, in the second they are opposite. Under parity  [image: image98.wmf]J
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 is invariant while 
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 changes sign (
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 is a pseudovector, 
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 is a vector): parity changes from one representation to the other. This means that we must use both representations if we insist on describing parity eigenstates: we see already why we shall need four component spinors to describe electrons. When using only one representation, we have Weyl spinors (2-components).
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Consider a massive particle at rest and apply a Lorentz transformation having (= Argth ( along Oz (one talks of a “boost”). As E= m and  pz=0 , 
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More generally, any 2 states having px= py= 0 can be transformed into each other using 
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In the case of a massless particle, m=0, E=p,
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. As e( > 0 a Lorentz transformation can not change the sign of Pz, it cannot even bring the particle to rest. The two subspaces of states having Pz > 0 and Pz < 0 are globally invariant under Lorentz transformations and correspond therefore to the eigenstates of Kz , one with Kz > 0 , the other with Kz < 0 . Therefore we have the situation below:
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One calls “helicity” the quantity 
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 are both vectors). It changes sign under a parity transformation. 

Covariant spin, spin states of massless particles

In the case of massive particles, we might define their spin in their rest frame but this is not possible for massless particles. The Poincaré group has two Casimir operators. One is obviously M2=E2–P2 ; the other one is related to spin. Indeed the operators 
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  are the components of a four-vector called the covariant spin and its square, 
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For a massive particle at rest in a state 
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, i.e. the covariant spin reduces to the usual spin multiplied by M and the eigenvalues of its square, the Casimir operator, takes the form – M2 j(j+1).
Note that the four-momentum and the covariant spin are “orthogonal”:  
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For a massless particle, we have in addition 
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Hence the important results:

– the covariant spin of a massless particle is collinear with its four-momentum 
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– ( is the helicity of the state and defines it completely. However, as 
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 is a pseudovector and 
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 a vector, we need ± Λ to describe eigenstates of parity.

– The spin states of a massless particle are therefore two: 
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 where j is the spin of the particle. For massless vector bosons such as the photon and the gluon we have 
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Action of a Poincaré transformation on a physical state: Dirac spinors and Dirac equation

A Poincaré transformation consisting of a translation by a four-vector a following a homogeneous Lorentz transformation ( is represented by a unitary matrix U(a,() such that 
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Introduce the boost L(p) bringing the system from rest 
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Hence the result:
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The effect of a Poincaré transformation separates in three factors: a phase factor for the translation, a change of eigenstate 
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, we define two states having momentum p but their spin in its rest state:     
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Then, 
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Watch that we write  A(()|( , p’ >L ={ A(()|( , p’ >}L =A(L–1(p’ ))A(() |( , p’ >

Take Oz along 
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Noting that A(1–i(K)=1+((/2  and Ā (1–i(K)=1–((/2
We then have 
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Note that an infinite momentum state of positive helicity has (1=1, (2=0 and is therefore a pure (R state. Conversely an infinite momentum state of negative helicity is a pure (L state. Note also that when a particle, in a ((1,(2) state at rest, is boosted in the positive direction, the ratio (2/(1 gets multiplied by a factor e(. 

From the above expressions of (L and (R as functions of ( we obtain the relation (Dirac equation) that relates (L and (R :
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which can be written in the general case:

[image: image438.wmf]2

/

1

-

-

l

 

These results are conveniently summarized in a compact form by introducing four-component Dirac spinors
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We then have 
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The relations 
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Writing 
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 we get the Dirac equation in its usual form 
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We now take the hermitian conjugate of the Dirac equation:     
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Using 
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Namely 
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Multiply the first one by 
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 left and the second by 
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       Namely 
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. It is a very general feature (Noether theorem) that whenever there exists a symmetry leaving the action invariant, there exists a current 
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 is an invariant (“charge” conservation). When extending Dirac equation to include an electromagnetic field defined by its 4-vector potential A( we need only to replace p by p–eA, namely 
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 in the Dirac equation. Repeating the calculation, we find that the A( term drops in the expression for the current. We then can write the Dirac equation (multiplied by the adjoint on the left)
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The second term of the lhs describes the 

interaction of the current with the field. The results 

above illustrate the properties of invariance of the 

Dirac equation. In particular, 
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More generally one can check the following transformation properties:  
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In the last line we used 
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Writing Dirac equation for massless particles gives 
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giving non-trivial solutions for 
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 in which cases (L and (R are eigenstates of (z having opposite eigenvalues: For pz=p0 , (L and (R are respectively negative- and positive-eigenvalue eigenstates of (z, namely left-handed and right-handed respectively. For pz= – p0  , (L and (R reverse their spin and therefore remain left-handed and right-handed respectively. Dirac spinors reduce to Weyl spinors having different handedness.

Charge conjugation, antiparticles

In Dirac equation  
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we may change 
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 which reduces to 
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Namely, in addition to the Klein-Gordon terms we have a new term 
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 that describes the interaction between the electromagnetic field and the spin of the particle.

Returning to the negative energy solutions we note that 
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. Namely, if 
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 is a solution of the Dirac equation with positive energy E, 
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 has now the wrong sign.  This suggests associating with each fermion an “antiparticle” of the same mass and spin but having opposite charge. Then a negative energy solution of the particle is a positive energy solution of the antiparticle. Indeed each known particle is associated with another known particle, its antiparticle, having such a property.

The four components find a clear interpretation in term of spin (2 components) and charge conjugation (2 components) and there is no problem of negative energies any longer.  
A comment on massless fermions

By multiplying Dirac equation on the left by the adjoint, we saw that 
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. The lhs of this equality is the Lagrangian density, L. Each of its three pieces is a scalar. To show that the first two are scalars, it is enough to show that 
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Under A, (I,(3) becomes (I+((3, (3+(I) and (I,–(3) becomes (I–((3, –(3+(I): 
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We see that 
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Writing ((=(1,
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The mass term 
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Let us now assume that the electron is massless. We have four particles, the electron left, e–L , the electron right, e–R , the positron left, e+L and the positron right, e+R . We may, as usual, call e–L and e–R particles. Then, their antiparticles are e+R and e+L respectively. But we may as well call e–L and e+L particles in which case their antiparticles are e+R and e–R respectively. 

With this second convention, which we now retain, all fermions are left-handed, all antifermions are right-handed. We would then like to rewrite the Lagrangian density using left-handed components exclusively. This means to introduce the charge conjugation operator. Let C= –i(y and χL=CΨR* , χL*=CΨR.
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. Note that C= –C–1= –C†= –CT= C* ;  C(( C–1=((T ;  C(( C–1=( (T    
Then ΨR= –C χL* and ΨR†=χLTC 

and ΨR†i((((ΨR =  (χLTC)i(((( (– C χL*)=χLTi((T(( χL* = – χL†i(( (( χL  (since it is real). Similarly ΨR†(( eA(ΨR=– χL†(( (–e)A( χL (Ψ and χ have opposite charges). 

The Lagrangian density is made of two independent pieces of the form:

 L = Ψ†(( (i(( – eA()Ψ, one for  ΨL and one for χL.  

Consider now the mass term m (ΨL†ΨR +ΨR†ΨL). Contrary to the kinetic term, it does couple the left and right components. It is only for massless particles that we are entitled to consider left handed fermions as particles and right handed fermions as antiparticles. One may still write the mass term in terms of left handed components exclusively but it does not allow for a different mass for each of the two species, Ψ and χ, since the Lagrangian density does not split in two independent pieces. 

ΨL†ΨR = –ΨL†C χL* ;  ΨR†ΨL=χLTC ΨL= χL†C ΨL* .
Supersymmetry
SUSY is a symmetry that associates bosons with fermions, more precisely spin J particles with spin J± ½ particles. This is the main reason why it has been unthought of for such a long time. To illustrate how it works, we discuss the case of a doublet containing a scalar and a spinor. We write the Lagrangian in terms of left-handed Weyl spinors exclusively, namely replace ΨR by its expression as a function of its antiparticle χL :  χLTCΨL is a scalar and  i( ((( C χL* a left-handed spinor. We write the scalar (massless) state as Ф (complex) and remember that the mass term and the kinetic term read in that case m2Ф*Ф and (∂μФ*)(∂μФ) respectively. Note that, Ф*Ф being conserved, ∂μ(Ф*Ф)=Ф*∂μФ+(∂μФ*)Ф =0.
We consider a pair made of a scalar boson B and a spin ½ fermion F and seek a transformation 1–iχΞ (χ is an infinitesimal real number) that conserves the total free Lagrangian, L=LB+LF with LB= (∂μФ*)(∂μФ) and LF = Ψ†(( i(( Ψ  . From now on we do not need to write the index L , we shall only deal with left-handed Weyl spinors. We are only interested in the terms of Ξ that mix bosons with fermions, δФ=–iχΞΨ and δΨ=–iχΞФ.

As δФ must be a spinor and δΨ a scalar, we must take Ξ to be a spinor.   Therefore we can introduce an infinitesimal spinor ξ and write simply  δФ=ξT CΨ. We might also write δΨ=ξФ. However, from the expression of the kinetic term, we see that the boson term contains two derivatives and the fermion term only one. This implies that the dimension of a boson field is that of a fermion field times a length to the power ½. Consequently χ must carry the dimension of a length to the power ½ from the expression of δФ and –½ from the expression for δΨ. This cannot work. A simple way out is to insert a derivative in the expression for δΨ but then we need another 4-vector to make a scalar. Hence δΨ= i( ( (( Ф Cξ *. Finally we simply write:  δФ= ξT CΨ ;       δΨ= i( ( (( Ф Cξ *.

Using this transformation law, we may now calculate the variation of the Lagrangian:

 δLB=(∂μФ*)∂ μ( ξT CΨ)+…

 δLF= ( i( ( (( Ф Cξ *)†( ν i( ν Ψ +…= (i ξT C ( ( (( Ф*)i( ν( νΨ+…

where we have used C= – C† and written … for terms in  ξ *.

As we may add as we wish total derivatives to the Lagrangian density without changing the physics, we may integrate δLB and δLF  by part and retain only the other term:

∂μФ*∂ μΨ=∂μ (Ф*∂ μΨ)–Ф*∂μ∂ μΨ              δLB= – ξTC{Ф*∂μ ∂ μΨ}+….

(( ( (( Ф*)( ν( νΨ=((( Ф*)(( (( ν( νΨ)=(( (Ф*( (( ν( νΨ) – Ф*(( (( ν(( ( νΨ)

δLF= –(i ξT C)i Ф*(( (( ν(( ( νΨ)+…=  ξT C{Ф*(( (( ν(( ( νΨ)}+…

But ( (( ν(( ( ν =( 0( 0 +( k( 0 ( k –( k( k ( 0 –( k( l( k ( l =( 0( 0 –( k ( k  =( μ ( μ  ,

where we have used ( k2=1 and( l( k= –( k ( l  for k≠l. Hence:

δLF= ξT C{Ф*(( ( μΨ)}+…= – δLB.

Therefore we have found a transformation that mixes Ф and Ψ, the scalar and spinor members of a fermion-boson pair, and leaves their total kinetic term, namely their free Lagrangian, invariant. If we restrict our discussion to massless particles, this means that we have found a new possible symmetry of space-time: that is supersymmetry. 
 Since there is a symmetry, we know from Noether theorem that there must be a conserved current. It reads 
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 is a spinorial index, 1 or 2. Indeed, 
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. The term in the first bracket cancels because of Dirac equation. The second term contains only terms where μ=ν otherwise the μν term and the νμ term cancel each other because 
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that vanishes because of the Klein Gordon equation. 
 An essential feature of the theory is the commutation relations of SUSY algebra: the commutator is obviously diagonal in F,B and it is proportional to σ μPμ When expressed in terms of the supercharge generators the commutation relations become anticommutation relations and read:
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These anticommutation relations generalize the usual fermion commutation relations. The last relation implies (taking the z axis along the momentum) 
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. In particular, when acting on vacuum (|0>)  ½
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and 
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; this means that the energy density of the vacuum is always positive or zero. And it vanishes only if the vacuum is an eigenstate of Q with eigenvalue zero: Q|0>=Q†|0>=0. In that case (but only in that case), when SUSY is an exact unbroken symmetry, all diagrams that contribute to the energy density of the vacuum must miraculously cancel each other. 
It also implies that in a supersymmetric theory any state of non zero energy has a partner obeying the opposite statistics and having an angular momentum differing by plus or minus half a unit. Indeed, start with a particle of helicity λ (= + or –) and moving along the third axis. By acting on this state repeatedly with 
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Now, 
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= 0 for massless particles, implying that 
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respectively lower and raise the helicity by ½ but, if applied twice, they give zero since [Qα ,Qβ]+=[Qα†,Qβ†]+=0: the multiplet contains only two states, the antiparticles form another multiplet. This is illustrated in the figure below.       
Note that the commutator of two supersymmetry transformations involves Pμ:  the Poincaré group must be extended to include SUSY.

These commutation relations are often summarized by saying that the square of a supersymmetry transformation is a translation in space-time, or that the square of a supersymmetry charge is the energy-momentum. It implies a very strong and deep relation between supersymmetry and the structure of space-time and is kind of a revolution in our understanding of its properties.
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 This feature opens the door to the construction of a theory that embeds general relativity: it is called supergravity (SUGRA). In SUSY as presented above, ξ was independent of the space-time position, we had a global symmetry, 
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ξ = 0. Letting ξ depend on xμ and requiring local gauge invariance opens the door to supergravity.
Lecture 3

Exchange symmetries, interactions, gauge invariance

Exchange symmetries


In the preceding lecture we talked about particles without mentioning their interactions. Yet, a non-interacting particle is a meaningless concept. We only know that there are particles because they interact, we only know that there are interactions because there are particles. More correctly, we only know of one thing, interacting particles, which we choose to describe with two concepts, particles on the one hand and interactions on the other. In particular, when we say that two particles are identical, what we mean is that in no circumstance are we able to see a difference between the ways in which they interact with other particles. Quantum mechanics tells us that a state made of identical particles must have a well defined parity in the exchange of two of them, negative for fermions, positive for bosons (we should not be too surprised by this fact, it is reminiscent of the behavior under a 2π rotation). Symmetries in the ways in which particles interact with each other imply symmetries under the exchange of the interacting particles.
 
The commutation relations obeyed by creation and annihilation operators are
[ai, aj] = [a†i , a†j] = 0
[ai, a†j] = (ij       for bosons and
[ai, aj]+ = [a†i, a†j]+ = 0       [ai, a†j]+ = (ij
for fermions. 


For i ( j bilinear products a†i aj transfer a particle from state i to state j, for i = j they count the number of particles in that state. In both cases they conserve the total number of particles and therefore commute with (i a†i ai .
Let us rewrite the commutation relations as ai a†j = ( a†j ai + (ij   or, 
equivalently, a†j ai = ( ai a†j – ( (ij where ( =+1 for bosons and  = –1 for fermions.
We now show that [a†i aj, a†k al]  = (kj a†i al – (li a†k aj :

a†i (aj a†k) al  = a†i (( a†k aj) al + (kj a†i al

= ( (a†i a†k) aj al + (kj a†i al
= ( a†k (a†i al) aj + (kj a†i al
= ( a†k (( al a†i) aj – (li a†k aj + (kj a†i al
= a†k al a†i aj + (kj a†i al – (li a†k aj
The bilinear products obey therefore a Lie algebra with structure constants Cijklil = (kj
Cijklkj = –(il    all others being 0. It is the algebra of SU(N), where N is the number of different possible particle states. Note that ( has disappeared from the expression of the commutator: bosons and fermions obey the same algebra.

This means that the exchange of particles will leave globally invariant the multiplet of states in which the system is. To illustrate this, let us consider the case of SU(2), referred to as isospin.
Take two states, 1 and 2.
a†1 a1 + a†2 a2 counts the number of particles, N

( + = a†1 a2     ( – = a†2 a1     [( +, (  –] = a†1 a1 – a†2 a2 = 2 ( o
[( o, ( (] = (( (                [( (, N] = [( o, N] = 0

The (’s obey the Lie algebra of angular momentum, SU(2). We can diagonalize ( 2 and ( o and classify the states into multiplets |jm> exactly as we did for angular momentum.

In the case of SU(3) we have a rank 2 algebra, eight independent generators and two Casimir operators labelling the various multiplets.
Changing the gauge

Let us first recall the property of gauge invariance enjoyed by the electromagnetic interaction. Adding a gradient to the 4-potential, 
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Changing the gauge leaves the fields unchanged. If 
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 they must represent the same state and therefore they can only differ by a phase, 
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. However, we are free to choose this phase as we wish at any point in space-time, α is a function of x. Let us introduce the “covariant derivative” 
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Dirac equation reads 
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But we want Ψ’ to obey Dirac equation, 
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And, as the first term is zero, we need 
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Let us summarize:

1. We made a transformation of our physical system by changing the gauge, i.e. by subtracting from the 4-potential the gradient of an arbitrary function, 
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2. We wrote that this transformation leaves the physics unchanged, namely that the transformed state must obey the Dirac equation written for the transformed 4-potential. 

3. We found that the unitary transformation relating 
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. They form a group called U(1) (the c-numbers exp(iα) are indeed 1(1 unimodular matrices). 
We also found that 
[image: image275.wmf](

)

Y

Y

m

a

m

D

e

D

i

=

'

 implying that 
[image: image276.wmf]m

D

 is a 4-vector and 
[image: image277.wmf]Y

g

Y

m

m

D

 is a scalar. Note that U(1) is abelian. 
We may now tell the same story backwards. We start by introducing U(1) symmetry under transformations exp(iQθ), where Q is the electric charge. U(1) is called the gauge group (it is a Lie group with zero structure constants). Next we require gauge invariance, meaning that we require invariance under exp(iQθ). We call it “local” gauge invariance because we want to choose θ(x) as we please at any point x in space-time (if we had a same θ at all points, we would talk of “global” gauge invariance). Of course we find that it is not possible: 
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. If we insist on invariance, we need to introduce a 4-vector 
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Namely we need to introduce the photon, a massless vector boson, which will be called a “gauge boson” for this reason. The new term in 
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 is the Dirac current. It describes the interaction between the photon and the Dirac current which we can pictorially represent by a diagram that we shall later associate with a Feynman diagram.  

Having introduced a new particle, a massless gauge boson – the photon – we need to describe a free photon (as Dirac equation describes a free fermion). We could repeat the analysis we made of the Dirac equation for spin 1, which would mean finding the quantum equivalent of Maxwell equations. Here we only state the result, namely the photon kinetic term reads:
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Generalization (Yang and Mills)

The generalization to a gauge group G (no longer supposed to be abelian) is straightforward. Let 
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 be the infinitesimal generators and 
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. We are therefore considering a set of particles of different kinds that transform into each other under transformations having the 
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as infinitesimal generators and we will require that their kinetic term be invariant, which of course it is not: in order to build an invariant we need to add additional terms. We can see that the requirement of gauge invariance (local of course !) implies the introduction of as many vector bosons as there are infinitesimal generators (linearly independent) and the covariant derivative reads:
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where 
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 For infinitesimal transformations we have:
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The leading term is 
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Finally the crossed terms in ∂μ reduce to 
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which we want to be equal to 
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. Instead of simply adding a gradient as we did with the photon (
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Like in the U(1) case, the scalar 
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 has acquired a new term that couples the Dirac current 
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These new terms result from the non abelian nature of the symmetry group. They were of course absent in the U(1) case:  photons do not have self-couplings.
Feynman graphs for pedestrians

How to calculate a cross-section or a decay rate when one knows the elementary couplings (such as 
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 in the U(1) case)? When the coupling constant is small enough (here 
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) one can make a perturbative calculation, i.e. a development in powers of the coupling constant, using Feynman graphs. An elementary and hand waving introduction is given below.
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The elementary electron-photon coupling 
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 was pictorially represented as a little graph with the straight line standing for the electron (more correctly for its Dirac current) and the wavy line for the photon (more correctly for its four-potential). Somehow, this elementary coupling must be related to transitions such as:
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None of these can be realized, however, because they do not conserve energy-momentum. For example 
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 but a photon can not have zero momentum. It would take a photon with mass 
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 in the rest frame of the initial electron: if the momentum of the photon is p, the energy of the final state electron must be 
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, which is only possible in the trivial case
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However, let us now consider the interaction between an electron and a positron. We may see it as proceeding in two steps 
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photon in the intermediate state may have a mass 
[image: image339.wmf]2

2

*

2

p

m

M

+

=

 if it is for a very short time 
[image: image340.wmf]t

D

 such that
[image: image341.wmf]h

~

2

t

c

M

D

*

: we may then construct such a wave packet, Heisenberg uncertainty relations allow for it. 

[image: image449.wmf]2

r

The photon in the intermediate state is said to be “virtual” or “off mass shell”. The diagram above is just the joining of two elementary graphs as shown on the right if we take the convention that changing the direction of a fermion line means taking its charge conjugate (particle 
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 antiparticle). 
Now we can think of other processes to describe 
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along the same general idea, for example:
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Here again the photon needs to be virtual, off-mass shell. Calling 
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 the incoming 4-momenta and 
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 the outgoing 4-momenta we have 
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(all 4 electrons are on mass shell) 
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The virtual photon 4-momentum is p1+p2 in the 
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 case and p1 –p3 in the 
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 case. Namely the virtual photon mass squared is
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 (always negative!) in the second case. 

We expect the cross-section to be smaller the more 
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 deviates from zero, the real photon mass (because of Heisenberg uncertainty relations). This would imply that the second process is important at small |t| values, i.e. at small scattering angles, and that the first process decreases with increasing center of mass energy. Indeed, the total cross-section is proportional to 
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We may still think of other, more complicated processes such as the ones depicted on the figures below:
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Diagrams  
[image: image358]   and        contain only 2 vertices but the more complicated diagrams contain 3 or 4 vertices instead of  2.   

They are called “higher order” diagrams while the latter, the simplest diagrams, are called “lower order” or “leading order” or “tree level” diagrams. To the extent that the coupling constant is much smaller than 1 and that it contributes as a factor at each vertex these appellations are meaningful. 

Contrary to the above hand waving arguments, the Feynman rules are rigorous prescriptions, demonstrable from first principles, which: 

i) State that the transition probability (cross-section, decay rate) of a given process 
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 is the square of the modulus of the sum of all possible transition amplitudes that lead from I to F. Each of the possible transition amplitudes is associated with a Feynman diagram as explained below.
ii) [image: image452.wmf]v

Give the recipe to calculate the transition amplitudes associated with each possible diagram. All possible diagrams means all diagrams (an infinity) made of the elementary couplings present in the Lagrangian (such as:   
associated with ejμAμ in the U(1) case) and having the 
initial and final state particles (in 
[image: image360.wmf]I

 and 
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, external lines) on 
mass shell and obeying energy momentum conservation at each vertex. On the contrary, the particles associated with internal lines do not need to be on mass shell. The recipe to calculate the transition amplitude associated with each diagram gives some numerical factors and a phase, one power of the coupling constant for each vertex and one “propagator” for each internal line accounting for the fact that the transition amplitude decreases when 
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 departs from the rest mass 
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 associated with the particle on the internal line. The contribution of a virtual particle having 4-momentum q and real mass m is, roughly speaking, 1/(q2–m2). As the transition amplitudes associated with different diagrams many have different phases, interference effects have to be expected. In practice, all this makes sense only if the coupling constant is small enough and if the number of diagrams to be considered beyond leading order is reasonably low. 
Quantum Chromodynamics
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The basic quark and antiquark triplets contain three quarks (or antiquarks) having a same flavor and three different color indices. In this paragraph we neglect completely quark flavors, they are ignored (and unchanged !) by the strong interaction, all what we are going to say has to be understood for one flavor and should be repeated to cover the six flavors. The quarks have fractional charges ( +2/3 for u, c, t  and –1/3 for d, s, b) but this also is irrelevant to the present section.  
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Gauge invariance generates eight massless gauge bosons, the vector gluons, with a well defined coupling to quarks and, in addition, triple and quadruple self-couplings as has been described above. 

Contrary to photons in QED, the QCD gluons are colored: a blue-antired gluon will transform a blue quark into a red quark, while a photon does not change the electric charge of the fermion to which it couples. A very important consequence is that, contrary to photons, gluons interact between themselves.
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The fact that gluons are colored is a consequence of the fact that SU(3) is not abelian, making QCD very different from QED. The most spectacular difference is that the force between two colored particles increases with distance instead of decreasing as is the case for QED. Only non-abelian symmetries can exhibit this feature, but not all of them do. 
 This has very important consequences. Feynman graphs such as those above enter any perturbative series, and, as they can be attached one after the other, an infinite number of times. When the virtual particles in the loop are nearly on mass shell, i.e. for very low momentum transfers, one may expect divergences. In the case of QED, as this corresponds to large distances and therefore weak forces, it does not have very important consequences. But it is no longer the case in QCD. Technically, the way to handle these singularities is, very crudely, to fix a mass scale (  arbitrarily, beyond which the perturbative expansion will be cut-off (renormalization group). A reasonable value for ( is ~200 MeV, corresponding to distances of the order of hadron sizes.
This makes it possible to calculate perturbatively processes with high momentum transfers q, the "bare" coupling constant g2 being replaced by an effective coupling constant (s, depending on q, that is of the form 
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The figure above shows measurements of the effective coupling constant, (s, of the strong interaction (one talks of a “running coupling constant”) as a function of (. It must be realized that each point corresponds to a different kind of measurement, each time probing different scales. The agreement with expectation (the full line) is really remarkable. 
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In QED, b is negative and the effective coupling decreases at large distances (small q’s). In QCD, b=(33–2Nf )/2(, where Nf =6 is the number of flavors, yielding b positive. The effective coupling tends logarithmically to 0 when 
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 . This means that for large momentum transfers, or equivalently at short distances, the quarks behave as if they were free inside the hadron: this is called asymptotic freedom and corresponds to the regime where perturbative expansions can be made. On the contrary, when 
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 the effective coupling increases to infinity, this is called sometimes infrared slavery: it results in the confinement of quarks inside hadrons and prevents any reliable perturbative calculation at large distances (or small q values). One can have a pictorial illustration of confinement by imagining that one tries to pull apart the quark-antiquark pair from within a meson. In this process the field becomes stronger and stronger up to the point where it can create a new quark-antiquark pair and one is then left with two mesons instead of one to start with: the quarks have remained confined within mesons and the pulling energy has been used to produce a new meson. 
In practice, in the perturbative regime (large momentum transfers and large distances) the pointlike interaction of quarks can be factored out from the large distance processes which describe how hadrons are made of quarks (structure functions) and how quarks “hadronize” (fragmentation functions). In particular, the hadronization of a very large momentum quark results in the production of a narrow jet of particles: this makes it possible to identify the quark among the secondaries of the interaction.

Another way to “deconfine” quarks from their parent hadrons is to bring hadrons so close together that their quark and gluon constituents may migrate from one to the next while still remaining at short distances from each other. This happened one microsecond after the big bang thanks to the very high temperature; it also probably happens in the core of neutron stars thanks to the very high pressure. Recently this regime has also been reproduced in the laboratory by colliding 100 GeV/nucleon gold nuclei against each other. This is done at Brookhaven (RHIC, relativistic heavy ion collider); the deconfined state is accessible to measurements and is referred to as “quark-gluon plasma”.
Because of the very strong binding of quarks within hadrons, it is not possible to consider the latter as simply made of their few “valence” quarks corresponding to their SU(3) multiplet. The field inside hadrons is so intense that they must be thought to contain also a “sea” of quark-antiquark pairs and of gluons. This implies some conceptual difficulty in the evaluation of the quark masses. Let us finally mention the existence of other possible colorless multiplets than the standard baryons (three quarks) and mesons (quark-antiquark). They include glueballs (colorless two gluon states) and pentaquarks (four quarks and an antiquark). Specimens of both species have been observed. 
SU(2)×U(1): Neutral currents and the Weinberg angle
Let us now turn to the description of the weak interaction in terms of a gauge interaction using SU(2)L as a gauge group. We shall ignore the problem of the weak gauge bosons being massive for the time being: we shall face it in the last lecture.  Requiring gauge invariance under SU(2)L will generate three gauge bosons forming an iso-triplet, W–, W0 and W+. While W– and W+ will describe charged currents (( decays), W0 will describe neutral currents. The similarity, or rather analogy, between the weak and electromagnetic neutral currents, suggests attempting a common description. Then we should take as a gauge group SU(2)L(U(1), the first group for the weak interaction and the second for QED. But it will not work because the electric charge, Q, does not commute with the generators of the first group, the three components 1/2(i of the weak isospin of left-handed fermions. Indeed Q= –1/2+ 1/2(3 for left-handed leptons, and 1/6+1/2(3 for left-handed quarks. We must take as generator  Y=Q–1/2(3 to have it commute with the three components of (. This expression is also valid for right-handed leptons that have (=0. The new quantity Y is called hypercharge. Now, when we take SU(2)L(U(1)Y as gauge group we generate four gauge bosons, the three weak bosons W–,W0 and W+ and the hypercharge boson B. 
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In order to recover the photon and the Z, we rotate W0 and B by an angle (W (note that the Z is not the W0, its mass differs from that of the charged W’s):
B   = ( cos(W –Z sin(W              W0 = ( sin(W + Z cos(W
The B and W0 couplings, with respective coupling constants g' and g read:

g’{<(L|(((Q–1/2(3)|(L>+<(R|((Q|(R>}B and g<(L|((1/2(3)|(L> W0 
respectively, giving for the (  and Z couplings:

{<(L|(((g’ cos(W (Q –1/2(3)+g sin(W 1/2(3| (L>+<(R|(( g’cos(W Q|(R>}(
{<(L|(((–g’ sin(W (Q –1/2(3)+g cos(W 1/2(3| (L>–<(R|(( g’sin(W  Q|(R>}Z
Imposing the photon coupling to be the QED term gives:

eQ=g’cos(W (Q –1/2(3)+ g sin(W 1/2(3
namely g’cos(W = gsin(W =e.

We are left with only two free parameters, (W, the so-called Weinberg angle (or sometimes weak angle) and the QED coupling constant, e. The coupling constants of the gauge groups are then g '= e/cos(W and g=e/sin(W. 

The ( and Z couplings are     e <
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e {<(L|(( {– tan(W (Q–1/2(3) + cot(W 1/2(3}| (L> – <(R|((  tan(W  Q|(R>}Z

= e {(tan(W + cot(W) <(L|((1/2(3| (L> –  tan(W <
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=e {<(L|(((1/cos(W sin(W) 1/2(3| (L>–<
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=(e/cos(W sin(W){<(L|((1/2(3|(L>– <
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The Z is therefore found to couple to a current j(3– sin2(W j(em, where j(em=<
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|((Q|(> and j(3=<(L|((1/2(3|(L>, with a coupling constant 2e/sin2(W.
Today, very numerous and accurate measurements have confirmed the validity of this unified description of the weak and electromagnetic interactions and the Weinberg angle has been measured with high precision, 
sin2(W  = 0.23149 ( 0.00017 from many different processes. Remember that e is measured (Josephson effects) to be equal to 1 .60217733 + 0.000 000 49 10–19 C.
Lecture 4

Introducing masses
Spontaneous symmetry breaking: weak boson masses and the Higgs boson

We still need to find a solution to the problem of the weak boson masses. In general, understanding the mechanism that generates masses, not only to the weak bosons but also to all fermions, is probably the most burning challenge of present day particle physics. Current views on this question are closely linked to the idea of spontaneous symmetry breaking. We devote a few lines to its introduction before tackling the specific problem of the weak boson masses. 
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Let us consider a scalar particle with states |(>. The mass term is m2<(|(> and the kinetic term is <(|((((|(> or equivalently<(((|(((>. Taking ( complex is like taking two scalar particles with a same mass m. Introduce an interaction in the form of a potential U taken to be a function of (2 = <(|(>, say U = (2((2–(2). 

We have now an infinite number of ground states along the circle <(|(> = (2/2.
The global U(1) symmetry of the system (the kinetic term, the mass term and the potential being invariant when we change ( into ei(() is responsible for the degeneracy of the ground state and becomes broken when a particular ground state is chosen, one talks of spontaneously broken symmetry. There are many examples of this in nature; spontaneous breaking is not violation; think for example of the aligned spins in a small magnetic domain of a permanent magnet. Taking ( real in the ground state that has been chosen and redefining the variables around it, (Im((( and Re(((1/2( +()  we find ( 2=( 2+1/2( 2+(2((+( 2 and U = (( 2+( 2((+( 2)2 – (1/2( 2)2 = –1/4( 4+2( 2( 2+ higher order in ( and (. 
As the kinetic term reads (((()2+(((()2, ( has a mass √2v and ( is massless, the higher order terms describing their interactions. This appearance of a massless scalar each time that there is spontaneous symmetry breaking is a very general result, it is called the Goldstone theorem and the massless bosons are called Goldstone bosons. There is one Goldstone boson per degree of freedom that has been frozen by the spontaneous symmetry breaking. 

In order to impose local gauge invariance, all we need to do is to replace the derivatives 
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 by covariant derivatives 
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 (V being the gauge boson of the symmetry group).

The kinetic term reads <
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Φ > – g2VμVμ <Φ| Φ>, with the new added term reading –g2V(V( (( 2+1/2( 2+(2((+( 2), of which the term 1/2g2( 2V(V( is a mass term for the gauge boson (with mass  g( /( 2).

What has happened is that we started with two particles of equal masses, 
Re( and Im( , we introduced a potential causing spontaneous symmetry breaking, and we were left with a massive particle, (, and a massless particle, (. Then, we required local gauge invariance under a symmetry having V as gauge boson and ended up with V being massive. As we can choose a gauge where ( is real, we can make ( explicitly disappear: one may say that the degree of freedom of the Goldstone boson has been used to give a longitudinal component to the gauge boson (massless bosons being purely transverse). This mass generation mechanism is called the Brout-Englert-Higgs mechanism, and we now apply it to the electroweak interaction. 

 We need to make three bosons massive, W+, W– and Z : we need three Goldstone bosons and therefore we  start with four scalars,  (1, (2, (3 and (4 and define (+=(1/2((1+i(2) and (0=(1/2((3+i(4).

We make ( =((+,(0) a doublet under SU(2)L and assign to it an hypercharge Y=1/2 (so we shall keep a neutral boson at the end, with no photon interaction). 
We can now write the covariant derivative, D((=(((–½ig(.W(–ig’YB()( .

We take a potential 
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 and ( 2=( 2/h. The potential minimum is at ( 2=1/2( 2=( 2/2h.  
The potential is invariant under O(4), the rotations in the 4-dimensional space of the (i as they leave (2=1/2
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 invariant. We then choose the axis of (3 along the ground state: we are left with the freedom of rotating (1, (2 and (4 around that axis (invariance under O(3)). We now change variables and develop around the ground state, (3=(, (1=(2=(4=0. Writing (0=(3–(, ( 2=1/2((+(0)2 and 
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Namely the scalar we are left with, (0 , the so-called Higgs boson, has a mass (2(=(((2h) (the mass term reads m2(2, namely 1/2m2((+(0)2 and we must identify (2 with 1/2m2). 
Moreover, it has a triple self-coupling with coupling constant hv= (2/( and a quadruple self-coupling with coupling constant h/4= ( 2/4( 2.

We now write the kinetic term replacing the normal derivatives by covariant derivatives for the isospin doublet |(>={0, ((+(0)/(2} and obtain :

<
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The first term is the Higgs boson kinetic term, the second term includes the mass terms of the gauge bosons and their interactions with the Higgs boson.

Replacing B= ( cos(W –Z sin(W, W0 =  ( sin(W +Z cos(W,

g’ = e/cos(W  and  g =e/sin (W one finds for the second term, writing A±=Ax±iAy:

(g/2)2|{( +W+ + ( –W– – ( sin(W – Z cos(W +tan(W (( cos(W –Z sin(W) } {0,(+(0}|2

= (g/2)2|{( +W+ + ( –W– – Z /cos(W}(0,(+(0 )|2
giving the following mass terms:

Mz= g ( /(2 cos(W)  = e( /sin(2(W)
Mw= g ( /2 = Mz cos(W 
M(=0

and the following couplings and coupling constants between the Higgs boson and the gauge bosons: (WW(0)=gMw,  (ZZ(0)=gMz/2cos(W,  (WW(0(0)=g2/4 and (ZZ(0(0)=g2/8cos2(W. The relation Mw=Mz cos(W is measured to be accurately obeyed and (, one of the two independent parameters that have been introduced (out of the three h, v and ( that are related through and (2 = (2/h) is therefore fixed by the measured value of Mz. However the Higgs boson mass, (2(=(((2h) is not constrained by the theory. 

We still need to consider the question of the fermion masses and of the mixing between families. It is now clear how the mechanism of spontaneous symmetry breaking generate masses, it is also at work in the fermion sector through mass terms of the type <fL,f’L|{(3 – i(4,– (1+ i(2 }|fR> and 
<fL,f’L|{(1+i(2, (3+i(4}|fR>.  There is no point in the present lectures to go in the detail of the calculation, it is not the technique that maters here but the main ideas. The point is that we have here terms that couple left-handed isodoublets with right-handed isosinglets, exactly what is required for a mass term, and when we break the symmetry we are left with mass terms (½ ((0+() fLfR and (½ ((0+() f’Lf’R of the required form. The only problem is that we can put whatever coefficient we wish in front, spontaneous symmetry breaking has indeed generated fermion masses but does not place any constraint on these masses. What it did however has been to generate a coupling between the fermions and the Higgs boson with a coupling constant m/v proportional to the fermion masses 
(as k((0+()fLfR = k( fLfR + k(0 fLfR implies m=kv and therefore g=k=m/(). When including several families, all what happens is that starting with terms such as 
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<(fL,f’L)i|{(1+i(2,(3+i(4}|(fR)j> one automatically introduces mixing between the fermions while retaining the fermion masses for the "real" fermions, meaning those that are eigenstates of the mass matrix. 
What have we achieved so far? We have a unified theory of the weak and electromagnetic interactions that depends on only two parameters that have been measured with excellent precisions, say e and sin2(W, if we ignore particle masses and mixings. We have been able to devise a mass generation mechanism that results from spontaneous symmetry breaking and that is successful at giving masses not only to the weak gauge bosons but also to all fermions and to explain their mixings. One difficulty with this theory is that it leaves us with 22 (=2+12+8) parameters that are unconstrained by the theory: two of the three Higgs parameters that we have introduced, we can take for example the W mass and the Higgs mass, twelve fermion masses (6 quarks and 6 leptons) and eight CKM matrix parameters (4 for quarks and 4 for leptons). A second difficulty, to say it kindly, is that until now the Higgs boson has defeated all efforts devoted to its search. It may be timely at this stage to summarize its main properties.
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The Higgs boson is a neutral scalar that couples to the weak gauge bosons, to itself and to the fermions (but not to photons nor to gluons). The fact that it couples to fermions in proportion to the fermion masses implies a very strong coupling to the top and bottom quarks. We know that its mass exceeds 100 GeV or so and there are strong indirect indications from the study of radiative corrections to electroweak processes that it should be in the 100 to 150 GeV range. The figure shows the situation as it has been settled at LEP: a mass of 200 GeV corresponds to a 2.5 standard deviations disagreement with the data. The production mechanisms that are most likely candidates for its discovery are radiation from a Z (that is how it has been searched for at LEP) or from a W or by fusion of a W pair. There are still some small hopes to see it at the Fermilab proton-antiproton collider but a new proton-proton collider is currently under construction at CERN that should not miss it: the LHC that is expected to start operation in the second half of the decade. A very heavy Higgs boson will become very broad, the ratio of its width to its mass increases quickly and reaches unity around a mass of 1 TeV. It would no longer be seen as a resonance but the weak interaction would become strong in this regime. Finally we must say that more complex schemes allowing for several Higgs bosons are possible (and even likely), in particular SUSY predicts at least five Higgses. But in such cases the lightest Higgs boson should have a mass that does not exceed the mass of the standard Higgs that has been considered here.
 Fermion mixing and CP violation 

We noted earlier that the s and b quarks, that are the lighter members of their respective families, are not stable but decay into quarks of the preceding family. The simplest case is K((e(, meaning s(d. This seems to contradict (and indeed it does!) what we said before. However it is fully and accurately accounted for by simply saying that the quark isospin doublets that we should have introduced are not (u,d), (c,s) and (t,b) but (u,d'), (c,s') and (t,b') with d’, s’ and b' obtained from d, s and b via a unitary transformation (note that it is arbitrary to have chosen to transform the charge –1/3 quarks, we might as well have kept them and transformed instead the charge 2/3 quarks). The 3(3 unitary matrix V that couples the q2/3 quarks to the q–1/3 quarks depends on 18–9=9 parameters minus 5 quark phases that can be arbitrarily fixed (one relative phase needs to be kept), meaning 4 parameters. It is called the Cabibbo-Kobayashi-Maskawa matrix and is overconstrained by the very numerous weak processes that mix the families together. A convenient parametrization (Wolfenstein) is in terms of the three sub-matrices Vij, defined as coupling families i and j. 
Then, V=1+( V12 + A(2V23 + A(3 V13 and the Vij take very simple forms:
V12=|s><u|–|d><c|,   V23=|b><c|–|s><t|,   V13=(*|b><u|+(1–()|d><t|.

The four parameters are ((0.22, the so-called Cabibbo angle, A(1.0 and the complex number (. If there had been only two families, the only parameter would have been the Cabibbo angle. But with three families the presence of a complex number coupling the first and third families has a very important consequence: it generates CP violation effects as we now briefly explain. 


The K0 and 
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 mesons have quark contents 
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respectively. 
Transitions between the two are possible via the diagrams below (called box-diagrams): the transition amplitude is dominated by |Vsu*Vdu|2 ~ (2 and the CP violation term by Im(Vst*Vtd Vsu*Vdu)  of order A2(6Im(().

Now CP (charge conjugation(parity) acting on these pseudoscalar meson states gives CP|K0>= –|
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>= –|K0>, namely the CP eigenstates are |K1>=(1/2(|K0>+|
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To the extent that CP is conserved in the decay process, K1 and K2 have very different decay modes (for example K1(2( while K2(3() and therefore different lifetimes (8.934 l0–11 and 5.17 l0–8s). They also have different masses as a result of the V-induced transitions between K0 and 
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K

. When the mass matrix is diagonalized a mass difference (m=m2–m1=0.53 10–8 
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 s–1 appears, of order (2. Of course when a K0 is produced in a strong interaction such as p(–(((, CP is globally conserved because a ( has been produced in association. But the kaon produced as a K0 or
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K

 is not a CP eigenstate and is expected to decay as a K1 or K2. An interesting consequence of the large difference between the K1 and K2 lifetimes is that far from the production target only K2’s survive. Making them interact in a second target, because of the different interaction cross-sections of K0 and
[image: image409.wmf]0

K

, a K1 component is regenerated. But in vacuum, where there is no regeneration, a pure K1 state remains a pure K1 state, a pure K2 state remains a pure K2 state, each evolves with time as exp(–iMi t) with Mi=mi–1/2i(i , mi and (i being the rest mass and respectively the width of the K meson. All this is true if CP is conserved but if CP is violated, transitions being induced between K1 and K2, K1 and K2 are no longer eigenstates of the mass matrix. In this case, the eigenstates become KS= K1 +(K2 and KL= K2 +(K1 where the subscripts S and L stand for "short" and "long" lifetime respectively. As V can induce transitions between K1 and K2 , CP is indeed violated

<K1 |V|K2>=1/2(<K0 |V|
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|V| K0>)=Im(<
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The amount of CP violation is measured from the ratio between the decay amplitudes of KL(2( and KS(2(  to be (=2.3 10–3. As it is equal to 
(1/2<K1 |V|K2>/(m, it is of order A2(4Im(() and as A is of order unity and (=0.22, (4=2.3 10–3 we get Im(() of order unity. The very small amount of CP violation observed in K0 decays is not the result of a small imaginary part of the Vtd matrix element (or Vbu , they are equal) but of the (4 factor. 

When going from the neutral kaons to neutral B mesons, the box diagram is now different and one finds ( of order unity in the B0d (=b
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) case and of order (2 in the B0s (=b
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) case. The large CP violation effects present in this sector have triggered a large interest in their study with two so-called "beauty factories" having been built for this very purpose (one at Stanford and one in Japan).
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The figure on the right illustrates the so-called unitarity triangle drawn in the complex plane, the upper summit corresponding to (. The contributions of various measurements are indicated. The figure on the left shows the current status of the knowledge of the CKM matrix. The unitarity triangle is shown as a bold line and the small ellipse around its upper summit indicates the constraints currently imposed on  (  by the experiments.
 Finally, before leaving the subject of CP violation, let us remember that it is the mechanism proposed to explain why some matter remained after the gigantic matter-antimatter annihilation that followed the big bang, as witnessed by the very many photons that pervade the universe. 

For a long time we thought that neutrinos were massless, in which case the mixing mechanism that was just described to be at work in the quark sector would have been absent from the lepton sector. But we know now that neutrinos are massive and nearly all what was said for quarks can now be repeated for leptons. In particular there is a mixing matrix equivalent to the CKM matrix and a mass matrix with non-zero mass differences between the three neutrino families. As neutrinos are stable, the ( widths are zero and neutrinos oscillate from one family into another and back without decaying. This is indeed the evidence we have for massive neutrinos: the disappearance of solar neutrinos and the different flux ratios (e/(( between upward and downward going atmospheric neutrinos. 
Solar neutrinos are electron neutrinos from pp(De+(e and we understand reasonably well how the sun works, in particular we are able to accurately and reliably calculate the flux of neutrinos that should reach the earth if they were massless; but the flux measured on earth is about half the value expected; the defect is blamed on oscillations of electron neutrinos into muon neutrinos and is used to evaluate a (( mass in the 10 meV region. [image: image464.emf] 
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Atmospheric neutrinos result from the decays of pions and kaons produced in the collisions of cosmic rays (protons and nuclei) with the earth atmosphere. They contain both electron and muon neutrinos (but more of the latter) and have low enough energies to traverse the earth without interacting significantly: one can detect both downward flying neutrinos from above and upward flying neutrinos from the antipodes. Here again the deviation from expectation is blamed on oscillations between muon and tau neutrinos and is used to evaluate a (( mass in the 50 meV region. The figure shows the present experimental situation: the ellipses indicate the constraints imposed on the neutrino masses and mixing parameters. In fact it is the differences between the masses squared of the members of an oscillating pair that are constrained; but we have good reasons (see-saw mechanism) to believe that neutrino masses are subject to a hierarchy similar to that which governs the masses of charged leptons; in such a case, the mass difference is nearly equal to the mass of the most massive member of the pair: the upper ellipse corresponds approximately to the τ neutrino and the lower one to the μ neutrino. 

Supersymmetry and the mass generation mechanism
  If we forget about masses, the ideas of group symmetry, of gauge invariance and of space-time symmetry have been sufficient to describe nearly all what we know of the physical world. Yet, we have many reasons to be dissatisfied and to have the conviction that it cannot be the last word. Let us start this section by examining some of the features of the standard model that we may find unsatisfactory.

a) Gravitation is completely ignored.



b) The mass generation mechanism that has been invoked and that relies on spontaneous symmetry breaking has been successful and inspiring but is not fully satisfactory. Not only does it leave us free to set 22 parameters by hand nearly unconstrained, but we have no idea of where it really comes from. How can it manage to generate fermion masses ranging from the meV range to 170 GeV, a span of something like a factor 1014 ! And why is the scale of the symmetry breaking so low compared to the two other mass scales that we have at our disposal, the Planck scale and the grand unification scale (see below)? The Higgs sector parameter 
[image: image416.wmf]n

 that fixes the spontaneous symmetry breaking scale is only 246 GeV, some 5 1016 times smaller than the Planck mass! This is usually referred to as the hierarchy problem. It is a serious problem because it is very difficult for a scalar like the Higgs not to acquire a large mass (meaning large on the grand unification/Planck scale) from higher order corrections.
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c) Why did nature choose the particular three factors entering the group symmetry, U(1), SU(2) and SU(3). One would like to think that they are a low energy approximation of a higher symmetry that would embed them in a single bigger group. Searches for such a “grand unification” have been intensive but have not been rewarded by much success. In particular, one prediction of several grand unification schemes is that the proton should decay much faster than allowed by the experimental constraints placed on the relevant rates (e.g. the rate of 
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 has been measured not to exceed 0.2 10–32 y–1). Also, why do we have color singlets (the leptons) and color triplets (the quarks), why do we have weak isosinglets (the right-handed fermions) and weak isodoublets (the left-handed fermions). There must be some reason behind all this. A hint at the existence of such a grand unification scheme is given by the evolution (the “running”) with the mass scale of the three coupling constants that seem to approach each other at a scale of the order of 1016 GeV. This is clearly illustrated on the figures below, the figure on the right being drawn in the framework of supersymmetry, the better convergence is often used as an argument in its favor.
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d) In addition to these three major arguments in favor of the existence of something beyond the Standard Model, one may quote a few others:
–Why three families? One would seem to be sufficient for a consistent theory.

–Why do we have fermions at all? with only bosons it would also seem that we can easily write a consistent theory.

–Why is charge (or hypercharge) quantized? Nothing imposes that in the Standard Model.

–Why did the weak interaction choose massive mediators and the strong interaction prefer confinement in order to achieve short range forces?

 
Supersymmetry offers answers, or rather hints to answers to several of the questions listed above. 
We have seen earlier that it associates to each of the particles that are known today a superpartner of opposite R-parity and having a spin differing by half a unit. This may sound strange since we do not know of any scalar (none of the fermions that we know of can be the partner of the Higgs) and, if SUSY were realized in nature, the two particles of a same doublet should have a same mass. For example the electron should have a scalar partner with a mass of 0.511 MeV. Such is clearly not the case. This implies that if SUSY is a symmetry that is used by nature, it must be badly broken. How badly? We know of three scales, the Planck scale, 1019 GeV, the grand unification scale, 1016 GeV and the scale of spontaneous symmetry breaking of SU(2)(U(1), 246 GeV. Assume that only the two former scales are relevant and all fermions and gauge bosons are originally massless, meaning that they acquire their mass by spontaneous breaking of some higher symmetry. Then the symmetry breaking scale is of the order of a few 100 GeV, very small indeed compared to the grand unification scale, one cannot say that the symmetries are “badly” broken, a few 100 GeV is just nothing. That is the main idea, the difficulty is then to explain what is referred to as the “hierarchy” problem, namely to find a mechanism that produces a spontaneous symmetry breaking scale that is so much smaller than the main scale. SUSY does it for us. To sketch very crudely the essential ideas, we may say that:

– One takes it as granted that there must be a grand unification mechanism at a scale of 1016 to 1017 GeV. A larger symmetry prevails above that scale and spontaneous symmetry breaking takes place somewhere in this sector (usually assumed to be in supergravity),

– There is a coupling of the supersymmetry breaking expectation values to the Standard Model supermultiplets, namely there are very massive bosons and/or fermions that couple the high mass sector to the particles of the Standard Model and thus communicate supersymmetry breaking,
– Seen from the large mass sector, we have essentially chiral massless fermions, namely the left-handed particles know nothing about the right-handed particles,

– When the spontaneous symmetry breaking mechanism takes place, in each supermultiplet the R-even particles are protected from acquiring a mass because of the SU(2)×U(1) symmetry. Indeed, if the left-handed and right-handed species are independent, the mass terms that couple the two species must cancel (otherwise we may change the phase of one of the components at will and the mass term is explicitely made to vary, the symmetry is not obeyed). This implies massless R-even fermions,

– The R-odd particles, namely the superpartners of the known fermions, are also protected from acquiring a mass, but this time not because of SU(2)×U(1) symmetry but because of supersymmetry. If supersymmetry were unbroken, the particles of a same supermultiplet should have the same mass, therefore the masses of the R-odd particles are locked to that of their R-even partners, and therefore vanish,

– When considering the higher order radiative correction terms that make the masses no longer vanish, we see therefore two different scales at work: one, the electroweak symmetry breaking scale, say 250 GeV, defines the scale of the R-even particle masses that remain equal for the two species (right and left handed). The other mass scale results from the unlocking of the supermultiplet paired masses; it defines the scale, say 1 TeV, of the masses of the R-odd members of a same species; for example, the selectron right and the selectron left are expected to have different masses (note that when one talks of a left-handed selectron, it is obviously an abuse of language since the selectron is a scalar, what is meant is the superpartner of the left-handed electron).

Today, typical lower limits on the masses of the R-odd particles are as follows: squarks: ~250 GeV; sleptons: ~80 to 90 GeV; gluino: ~190 to 260 GeV depending on assumptions; neutralinos (mixtures of photino, Zino and h0): ~33 GeV for the lightest, ~56 GeV for the next, ~107 GeV for the heaviest; charginos (mixtures of W
[image: image418.wmf]±

and H
[image: image419.wmf]±

): ~68 GeV; minimal SUSY Higgs: 78 GeV for H
[image: image420.wmf]±

, 91 GeV for h0 and A0. The mass lower limit for the standard model Higgs H0 (no SUSY) is 113 GeV.

Within a few years, we should know whether or not a rich set of new R-odd particles is waiting for us to discover them in the few hundred GeV mass range. If such is the case, SUSY will be accepted as one of the most fundamental building blocks of nature and will give a very strong support to the new theories, essentially superstring theories, which are currently being constructed and which govern what happens at the Planck scale. If no such particle is found, the assumption that supersymmetry plays a role in nature will still remain a good bet, probably in a more subtle way than we can imagine today, but the student of modern physics will undoubtedly never regret to have studied what it is and what it implies.
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