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FOREWORD 
The lectures, organized in a set of seven chapters preceded by a general introduction are meant at students having a good elementary knowledge of the bases of quantum mechanics and of relativity (but not of field theory). An elementary summary of the basic ideas underlying quantum mechanics is given in the Appendix.
The emphasis is put on giving the student an introduction to some of these concepts that are essential in contemporary physics, such as space-time symmetries (including an introduction to supersymmetry), Lie groups, gauge invariance, Feynman graphs and spontaneous symmetry breaking.

The first half of the course is an introduction to some of these concepts, including SU(N) symmetries, Dirac equation and Yang Mills gauge groups. The idea is not to give a rigorous treatment but to make the student grasp the essential ideas.

The second half of the course is an application to the Standard Model of elementary particles, SU(3)C×SU(2)L×U(1)Y. The first chapter is on the strong interaction and the second chapter on the electroweak interaction. Each starts which a summary of the main experimental observations and is followed by the Standard Model description. The ideas of confinement and asymptotic freedom in the first case, of electroweak unification and of Higgs mechanism in the second are introduced. The last chapter is an introduction to supersymmetry with the aim of making the student aware of the potential importance of the topic.
LECTURE 1

ELEMENTARY PARTICLES AND THEIR INTERACTIONS: A SUMMARY

A brief overlook and a few landmarks

The past century has seen a tremendous development in our knowledge of the world. We have learned that matter is made of atoms, themselves made of nuclei and electrons in electromagnetic interaction as described by Maxwell equations. That their energy levels are quantified, implying that quantum mechanics has to replace Newtonian mechanics, the basic quantum being the Planck constant, ħ=h/2π=8mK.ns=197MeV.fm/c with 1fm=10–13cm, the approximate proton radius, and c, the speed of light, equal to 30cm/ns. That space and time are not independent but mix according to the laws of special relativity. That each particle that is known of, has an antiparticle companion of the same mass. That the atomic nuclei are made of nucleons, protons and neutrons, themselves made of up and down quarks kept together against Coulomb repulsion by the short range strong force. That there exists another interaction in nature, the weak interaction, that is responsible in particular for the beta-decay of neutrons into protons and produces a particle of a new kind, the neutrino. That there exist many other particles, usually made of quarks (and possibly antiquarks), that may experience the electromagnetic, weak and strong interactions. That there exist bosons associated with each of these interactions, electromagnetic, strong and weak: they are called photon, weak bosons and gluons respectively. That gravitation, the fourth and last interaction which is known of, can be descried in the frame of general relativity by a distortion of space time in the vicinity of masses, however leading to inconsistencies with quantum mechanics when one approaches the Planck mass, MP=√(ħc/GN)=1.2 1019 Gev/c2=22 (g=2 1034 s–1 h/c2 (GN being the Newtonian gravitational constant), showing that quantum mechanics and general relativity cannot be the last word. That the universe was born 14 billions years ago in a “big bang” and has been expanding since then, with quarks combining into hadrons after a microsecond, becoming transparent to photons at the age of 400 thousand years and starting to gravitationally cluster into galaxies at the age of 1 billion years… 
Particle physics aims at giving a coherent picture of all of that. The ambition of the present lectures is simply to sketch it briefly.
The general frame

Modern physics describes the world starting from a single fermion and making it obey a number of symmetries; meaning that its states have a number of components which transform into each other under such symmetries. In such transformations some quantities are invariant, others transform according to well defined laws. Quantum mechanics and special relativity define the framework in which such a description is made.
Homogeneity and isotropy of space-time

A first set of symmetries are associated with the homogeneity and isotropy of space-time. They imply invariance of the laws of nature under space-time translations and rotations, the latter consisting of space rotations and proper Lorentz transformations. Translation invariance results in energy-momentum transforming as a four-vector and its norm, the mass, being invariant. Rotation invariance results in covariant spin transforming as a four-vector and its norm being again invariant.

Continuous transformations, representations, Lie groups

A transformation in space-time is associated with a transformation of the physical states in Hilbert space; the latter is called a representation of the former. They both obey the same algebra, namely the same commutation relations. The case of transformations belonging to continuous groups is of particular importance. It is then useful to deal with infinitesimal transformations leading to the introduction of infinitesimal generators. Finite transformations are obtained by exponentiation. A theorem by Wigner states that representations must be unitary, linear or antilinear. Once the commutation relations existing between the generators are known, the structure of the group of transformations and of its representations are essentially defined. One talks of Lie groups and Lie algebras.

Charge conjugation and the Dirac current

In the case of the space-time transformations mentioned above, we have the Poincaré group and its SL(2)C representation. In fact a particular feature of proper Lorentz transformations, easily made explicit in the case of massless particles, is that it implies the use of two different representations when one wishes to include parity (associated with a change of sign of the space axes). The relation between these is the Dirac equation and the two different components that it implies correspond to the existence of particle/antiparticle pairs. The two members of a same pair are related by charge conjugation. In the case of a spin 1/2, one needs a two-component spinor for each member of the pair, hence the four components of Dirac spinors. The Dirac current will be seen to transform as a four-vector and will be used to construct invariants.

More symmetries make the Standard Model

Multiplication of the components will be made by introducing additional group symmetries, this time directly at the level of the Hilbert space. Such symmetries are the result of invariance under the exchange of the different components among themselves. In practice SU(2) symmetry will be introduced to describe weak isospin and SU(3) symmetry to describe color (the charge of the strong interaction) while U(1) symmetry will describe the electric charge (more correctly the hypercharge). A first flaw in the picture is apparent at this stage: two other symmetries are necessary but we do not know how to introduce them. One is the symmetry between quarks and leptons, one talks about grand unification, the other is the triplication of fermion families. Then, the picture of the world of fermions, all having spin 1/2, is complete. It includes three lepton families and three quark families. Each family consists of two members of opposite weak isospins: (electron and its neutrino, muon and its neutrino, tau and its neutrino) for the leptons, (up and down, charmed and strange, top and bottom) for the quarks. The leptons are color singlets while the quarks are color triplets. A property of the weak interaction is that it knows only about left-handed fermions (and right-handed antifermions), implying maximal parity violation. Another way to say the same thing is that left-handed fermions are weak isospin doublets while right-handed fermions are weak isospin singlets. Nothing tells us at this stage which values the masses of these particles should take; indeed they could very well be zero. In practice they cover a very broad spectrum which we do not understand: this is the second flaw that we encounter, we have only hints at its understanding (Higgs mechanism, spontaneously broken SU(2)×U(1), see later ).

Gauge invariance and gauge bosons

At this stage we said nothing about interactions between fermions, we only described free fermions; nor did we say anything about bosons and their interactions. All this will be dealt with in a single go by simply introducing a new symmetry, called gauge invariance; namely by requiring that the phases of the various components of a fermion state can be chosen as we wish at any point in space-time. Gauge invariance is not obeyed by the free fermion states; but by looking at how they transform one sees that gauge invariance can be obeyed by simply adding new bosons having well defined interactions with the fermions. These so called gauge bosons are vector bosons, meaning that they have spin one, and are massless. The gauge boson of U(1) is the photon with its electromagnetic interaction with charged fermions, that of SU(3) is the eight-component gluon with its strong interaction with colored  fermions (namely quarks) and that of SU(2) is the three-component weak boson that interacts with weak isospin. However, the latter is not massless, indeed it is very massive, around 80-90 GeV/c2.

Spontaneous symmetry breaking and the Higgs mechanism

This sounds as a new, and major, flaw in the picture; however it is elegantly solved by unifying the weak and electromagnetic sectors using a single, spontaneously broken, symmetry. This reduces the understanding of the relative strengths of weak and electromagnetic interactions as well as of the mass values of the weak bosons to the knowledge of a single parameter, the so called Weinberg angle that has been measured with great accuracy. However it also implies the existence of at least one new boson, this time a scalar, the as yet unobserved Higgs boson. Spontaneous symmetry breaking provides a natural mechanism for generating not only gauge boson masses but also fermion masses; unfortunately the theory does not tell what are these Higgs boson and the fermion masses. This picture does not say either what is behind the spontaneous symmetry breaking, this is considered as a major new flaw of the theory.
Supersymmetry and new perspectives 

The Poincaré group does not exhaust possible space-time symmetries. A transformation between fermions and bosons, referred to as supersymmetry, is also possible. A few words will be said about it and about its potential ability at providing a better understanding of spontaneous symmetry breaking and, may be more importantly, at providing a description of the fourth force of nature, gravity, about which the above picture does not say anything. Considerations on this point will remain at a very elementary level. A few words will be said on the current research avenues pursued in this direction.
Particle names and masses

The tables below summarize the properties of the known elementary particles. Starting with the fermions, they fall in four main categories depending on their behavior under SU(2) and under SU(3). This is summarized in the table below. What left-handed and right-handed exactly means will be clarified in Lecture 4. For the time being, it is sufficient to say that in the limit of infinite momentum right-handed fermions have their spin parallel to their momentum, while left-handed fermions have their spin anti-parallel to their momentum.
                   Behavior of fermions under SU(2) and SU(3)
	SU(2)(SU(3)

Behavior
	SU(3) color

	
	Triplet
	Singlet

	SU(2) Weak 

Isospin
	Doublet
	Left-handed quark
	Left-handed lepton

	
	Singlet
	Right-handed quark
	Right-handed lepton


In the limit of massless fermions, the distinction between the three families would be irrelevant since they would be indistinguishable. While fermions of different colors have exactly the same masses (color symmetry is exact, unbroken), fermions of different weak isospin have different masses (and hence different names). Weak isospin symmetry is broken and it is natural to associate the symmetry-breaking mechanism with the mass generation mechanism. The table below shows how this is realized in nature. It will become clear in Lecture 6 that the quark masses are not neatly defined (their binding energies are much higher than their masses and they do not exist as free states).  
                              Fermion (spin ½) properties
	
	Charge
	Weak

Iso

spin
	First Family
	Second  Family
	Third family

	
	
	
	Name
	Symbol
	Mass
(MeV)
	Name
	Symbol
	Mass
(GeV)
	Name
	Symbol
	Mass
(GeV)

	Quarks
	+2/3
	+1/2
	Up
	u
	~3
	Charmed
	c
	1.3
	Top
	t
	174

	
	–1/3
	–1/2
	Down
	d
	~6
	Strange
	s
	0.12
	Bottom
	b
	4.2

	Leptons
	0
	+1/2
	Electron

neutrino
	νe
	?
	Muon 

neutrino
	ν(
	10–11
	Tau

Neutrino
	ν(
	10–10

	
	–1
	–1/2
	Electron
	e
	0.511
	Muon
	(
	0.106
	Tau
	(
	1.777


                                       Boson properties
There are three multiplets of vector bosons, each associated to one interaction (electromagnetic, strong and weak).

The photon, γ, is a massless singlet and couples to electric charge.

The gluon, g, is a massless color octet and couples to color.

The weak bosons are massive and include the W± (80.4 GeV) and the neutral Z (91.2 GeV). They couple to weak isospin and form a weak isospin triplet. Not quite, however: the Z is slightly different from the neutral member of this triplet and couples to the electromagnetic current as well (via the square of the sine of the Weinberg angle). This will become clear in Lecture 7. 

The lower limit on the mass of the lightest scalar Higgs is around 100 GeV.

LECTURE 2

ANGULAR MOMENTUM AND ROTATIONS
The student is supposed to be familiar with angular momentum. The main purpose of the present lecture, besides refreshing his memory, is to emphasize the link between rotations and angular momentum, the latter being the infinitesimal generators of the former, and to illustrate the richness of the information contained in the commutation relations of the infinitesimal generators.

Commutation relations, angular momentum algebra
Orbital angular momentum is defined as the vector product 
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 are the position and momentum vectors respectively. In the {
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} representation, i.e. the representation where the position operator is diagonal, 
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, (natural units, ħ=c=1, are used throughout the present lecture). The commutators [r​​i​​ ,pj​] where i and j label the three space components, x, y and z, read [r​​i​​ ,pj​]=iδ​ij.
[lx ,ly]=[ry pz – rz py , rz px – rx pz]= ry px [pz, rz]+ py rx [rz , pz]=i(rx py–ry px)=ilz
Hence the general result:

[lx ,ly]=ilz and circular permutations of (x,y,z) or, equivalently, [li ,lj]=iεijklk .

Many properties of a set of three hermitian operators, Ji=Ji†, obeying the above commutation rules, can be derived without further assumption.

Introduce the “step operators”
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 (note that they are not hermitian) J+†=J– and J–†=J+.
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              [J+,J–]=2Jz
J+J–=Jx2+Jy2–i[Jx ,Jy]= Jx2+Jy2+Jz=J2–Jz(Jz–1)]
J–J+=Jx2+Jy2+i[Jx ,Jy]= Jx2+Jy2–Jz=J2–Jz(Jz+1)]
[Jz ,J±]=[Jz ,Jx]± i[Jz ,Jy]=iJy±Jx=±J±
[Jz,J+J–]=[Jz ,J2]=JzJ+J––J+J–Jz–J+JzJ–+J+JzJ–=[Jz ,J+]J––J+[J–,Jz]=J+J––J+J–=0
Hence the commutation table :
	
	Jz
	J+
	J–
	J2

	Jz
	0
	J+
	–J–
	0

	J+
	–J+
	0
	2Jz
	0

	J–
	J–
	–2Jz
	0
	0

	J2
	0
	0
	0
	0


Eigenvalues and eigenstates

We may write the eigenvalues of J2 and Jz as j(j+1) and m respectively, with j and m real, j ≥ 0. Then J2|jm>=j(j+1)|jm>, Jz|jm>=m|jm>.

J–J+|jm>=(j(j+1)–m(m+1)) |jm>=(j–m)(j+m+1)|jm>

J+J–|jm>=(j(j+1)–m(m–1)) |jm>=(j+m)(j–m+1)|jm>

||J+|jm>||2=<jm| J–J+|jm>=(j–m)(j+m+1)|||jm>||2 ≥ 0

||J–|jm>||2=<jm| J+J–|jm>=(j+m)(j–m+1)|||jm>||2 ≥ 0

For both (j–m)(j+m+1)and (j+m)(j–m+1) to be positive we need :

–j ≤ m ≤ j as j ≥ 0.

Jz J±|jm>= J± m|jm>+[ Jz ,J±]|jm>= J±(m± 1)|jm>

Jz {J±|jm>}=(m±1){J±|jm>}, namely J±|jm> is an eigenstate of Jz with eigenvalue (m±1).This is why J± is called a “step” operator. Hence the result:
J+|jm>={(j–m)(j+m+1)}½|j,m+1>, J–|jm>={(j+m)(j–m+1)}½|j,m–1>

To obey –j ≤ m ≤ j steps must fall right on m=±j to give J+|j,j>=J–|j,–j>=0
Hence the important result:

2j must be integer and m must be a number of the list {–j, –j+1, …, j–1, j}.

Spin ½, Pauli matrices

j=½      J+2=J–2=0    J2=¾        Jz2=¼     
J+J–=¾–Jz2+Jz=½+ Jz       J–J+=¾ –Jz2–Jz=½– Jz       

J+J– + J–J+=[ J+,J–]+ = 1      Jx2 +Jy2 = ½

J±2=0       (Jx2 –Jy2) ± i(Jx Jy + Jy Jx)=0

Jx2=Jy2=Jz2=1/4 and [Jx ,Jy]+=0

One defines the Pauli matrices as ( = 2J
σx2=1;    [σx ,σy]+=0 ;   [σx ,σy]= 2iσz;   σx σy= iσz + circular permutations;
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Spherical harmonics

In polar coordinates, dω=sinθdθdφ is the solid angle element.

 <ω|lm>=Ylm(ω) defines the spherical harmonics. Writing the closure relations, we get the equalities:
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Adding angular momenta

J12|j1m1> = j1(j1+1)| j1m1>,    J1z|j1m1> = m1| j1m1>

J22|j2m2> = j2(j2+1)| j2m2>,    J2z|j2m2> = m2| j2m2>
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|JM>=J(J+1)|JM,    Jz|JM>=M|JM>

J1z|j1m1 , j2m2> = m1|j1m1 , j2m2>     J2z|j1m1 , j2m2> = m2|j1m1 , j2m2>      

Jz|j1m1 , j2m2>= (m1+m2)|j1m1 , j2m2>   
 |j1m1 , j2m2> are eigenstates of Jz with eigenvalues M= m1+m2.    
Hence Schwinger’s recipe to construct the complete set of |JM>, the best is to illustrate it on an example: add j1=1 and j2=5/2. Slide (–1,0,1), i.e. the three m states of J1 on the six m states of J2  in such away that the 0 be successively on each of them:

                 –7/2   –5/2     –3/2     –1/2     +1/2     +3/2     +5/2    +7/2
         –1        0        +1

                   –1          0        +1
                               –1          0         +1

                                           –1           0        +1

                                                         –1         0         +1

                                                                     –1          0       +1         
…collect all:

1[–7/2]+2[–5/2]+3[–3/2] +3[–1/2]+3[+1/2] +3[+3/2]+2[+5/2] +1[+7/2]

and then regroup it in angular momentum multiplets starting from the 
largest M value:

{1}({5/2}={7/2}({5/2}({3/2}

This recipe is extremely convenient in more complicated cases, e.g. to combine SU(3) multiplets. Let us count explicitly how many final states we have, starting from the maximal J value, j1+j2:
	Index 
	J
	Number of states

	0
	j1+j2
	2(j1+j2)+1

	1
	j1+j2–1
	2(j1+j2)+1–2

	2
	j1+j2–2
	2(j1+j2)+1–4

	…
	…
	…

	n
	j1+j2–n
	2(j1+j2)+1–2n


There are (2j1+1) (2j2+1) states to start with.

There are (n+1)(2(j1+ j2)+1)–2(1+2+…n)=(n+1) (2(j1+ j2)+1–n) 
states at the end. Equating the two gives:

4j1j2+(2(j1+j2)+1)(1–n–1)+n(n+1)=0 namely n2–2(j1+j2)n+4 j1j2=0

n=( j1+j2)± 
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= (j1+j2) ± |j1-j2| and, as J≤ j1+j2, 
n=(j1+j2) – |j1–j2|

Then J is a number of the list: {|j1–j2|,|j1–j2|+1, |j1–j2|+2,…, j1+j2–1, j1+j2}

The coefficients of the transformation |j1m1,j2m2>=∑JM<JM|j1m1,j2m2>|JM> are called Clebsch-Gordan coefficients. They cancel if M
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m1+m2 or if J<|j1–j2| or if J > j1+j2.

Space rotations and their representation in Hilbert space

Let |Ψ> be a state vector representing a system S and |Ψ’> the state vector representing the system S’ obtained from S via a space rotation R.

<Rr|Ψ’>=<r|Ψ> or equivalently <r|Ψ’>=<R–1 r| Ψ>
The new state |Ψ’> is obtained from |Ψ> through a linear transformation in Hilbert space, |Ψ’>=R|Ψ>. We use the same symbol, R, to represent the transformation in normal space and that in Hilbert space. However it must be clear that they are two very different objects, the second is called a “representation” of the first. However, they both form a group and the representation of the product of two space rotations is the product of the two representations. It is left to the student as an exercise to convince himself of the truth of this statement.
For scalar products to be conserved we want R (in Hilbert space) to be unitary (if we work with linear operators, otherwise it might also be antiunitary as is the case for time reversal and charge conjugation; but for transformations that derive continuously from identity, it must be unitary), R†R=R R† =1, R†=R–1.  

R (in normal space) is orthogonal to conserve lengths. Let us take as an example a rotation of angle θ around the z axis and work it out in detail as it is essential to well master these arguments:

Rz=
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 For θ infinitesimal we may write Rz=1–iθJz where we define Jz (in Hilbert space), the infinitesimal generator of a rotation around the z axis. As Rz is unitary, Jz must be hermitian. It is essential to realize that if R=R1R2 in real space, the representation of R in Hilbert space is the product of the representations of R1 and R2. This justifies our using of a same symbol. In particular commutation relations are conserved when going from normal space to the representation in Hilbert space. We can therefore evaluate them in real space, they will also apply to Hilbert space.

Jz= 
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= – i|x><y|+i|y><x| and, by circular permutation,

Jx= – i|y><z|+i|z><y| and Jy= –i|z><x|+i|x><z|.

[Jx , Jy]=–|y><x|+|x><y|=iJz      
Hence the result:

The infinitesimal generators of space rotations obey the angular momentum commutation relations. All earlier results obtained above apply. 
In particular consider an eigenstate of J2 and Jz ,  |j,m>. Under an infinitesimal rotation of angle θ around the z axis it will transform into: 
(1–i θ Jz)|j,m> =| j,m>– imθ|j,m>=exp(–imθ) |j,m>. 
Namely the transformed state has only changed its phase by a quantity –mθ, any measurement performed on that state will give the same result as before rotation.

We might also have written, for an infinitesimal transformation,
 Rz=1–θ∂/
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θ implying that Jz=–i
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/
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θ. 
We can generate finite rotations around the z axis as a sequence of infinitesimal rotations: limn→∞(1–i(θ/n)Jz)n = exp(–iθJz).
Finally, to close the loop, let us remark that lz=–i(x
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Namely lz=–i
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θ.
In general a space rotation can be defined by three Euler angles, α, β, γ, and one finds  R(α, β, γ)=exp(–iαJz) exp(–iβJy) exp(–iγJz).

The space E j spanned by the states |jm> of a same multiplet is globally invariant under rotations as R commutes with J2 (each of the three Euler angle rotations leaves J invariant, it only changes the phase around the relevant axis). <Jm|R|J’m’>= δJJ’RJmm’.

RJmm’(α, β, γ) are called rotation matrices.

<ω|R|lm> = <ω’|lm> = ∑m’<ω|lm’><lm’|R|lm>;      ω’=R​–1(ω);
Ylm(ω’) = ∑m’ Rlm’m(ω’→ ω) Ylm’(ω)

For S to be invariant under rotation (S is then said to be a scalar) it takes
S= R†SR and, as R R† = 1, [R,S]=0, i.e. [J,S]=0.

For three operators Vx,Vy and Vz to be the three components of a vector operator we want RVx = R V.x = V.Rx = Vx+ θ Vy
RVx R†=(1–iθJz)Vx(1+iθJz)= Vx–iθ[Jz,Vx]= Vx+θ Vy= Vx–iθ(iVy)

Therefore [Jz,Vx]= iVy and circular permutations: vector operators have the same commutation relations with the angular momentum operator as the angular momentum operator has with itself. Indeed the angular momentum operator is a vector operator. In general the commutation relations of an operator with the total angular momentum operator describe how it transforms under rotations. For a set of operators Tkq transforming as R Tkq R†=∑q’ Tkq Rkq’q one has:

[J±,Tkq]={k(k+1)–q(q±1)}½ Tkq±1
[Jz,Tkq]=q Tkq
Tk is called an irreducible tensor operator with components Tkq. It obeys the Wigner-Eckart theorem, <jm|Tkq|jm’>= (2j+1)–½<j||Tk||j’><j’k,m’q|jm> and the <j||Tk||j’> are called its irreducible matrix elements.

Continuous groups like the rotation group are called Lie groups and the commutation relations of their infinitesimal generators form a Lie algebra, [Gi,Gj]=∑kfkijGk. The fkij are called the structure constants of the group. Operators that commute with all operators (like is the case for J2 in the rotation group) are called Casimir operators. The maximum number of operators commuting both with J2 and with each other (here there is only one, for example Jz) defines the rank of the algebra (here 1).
SU(2) and SO(3) 
To each vector 
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 of components x1, x2, x3 associate a 2(2 hermitian matrix X having TrX=0, DetX=–
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2, namely X=
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. We have 
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X). To each rotation R transforming 
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→
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’, 
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 (SO(3), special orthogonal in three dimensions) associate a unitary matrix A changing X in to X’, X’=AXA†. We need DetA=1 to preserve DetX=
[image: image57.wmf]x

r

2 and AA†=1 to preserve TrX=0. The A’s form a group (SU(2), special unitary in two dimensions)                                        x’j=∑k Rjk xk=½Tr(σj X’)=½Tr(σj AXA†)=½Tr(σj A ∑k σk xk A†)                                                                                            

Rjk=½Tr(σj A σk A†). Note that A, being unitary, may be written exp(iλ.σ) with λ1, λ2, λ3 real. If A is a representation, so is –A (± I represent rotations of 2π).

So is also A* but A*=ζ–1A ζ with ζ= iσ2. A and A* are obtained from each other by a unitary transformation and are therefore equivalent representations.

Note that for θ= 2π, Rz(2π )=exp(–2πiJz)|jm>= exp(–2πim)|jm> 

   =+|jm> for m integer

   =–|jm> for m half-integer.     
LECTURE 3
EXCHANGE SYMMETRIES

The results obtained for angular momentum are very general. They can be extended to any group of continuous transformations having infinitesimal generators Xi obeying the algebra [Xi ,,Xj] =
[image: image58.wmf]å
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One then talks of Lie groups and Lie algebras. The 
[image: image59.wmf]k

ij

C

 are called the structure constants. Operators K( such that [K(,Xi] = 0 (i are called Casimir operators (J2 in the angular momentum case). A number r of operators H( other than K( commute with each other (and of course with K(). In the angular momentum case, r = 1, H( can be chosen to be Jz . r is the rank of the Lie algebra.

All other operators can be expressed as linear combinations of the K(, H(  and of linearly independent step operators E(  that satisfy:
 
   [K( , E( ] = 0                              angular momentum: [J2, J(] = 0
              [H( , E( ] = a( E(                        angular momentum: [Jz , J(] = (J(
implying E( | k( h( > ( | k(  h(+ a(>
         for K( | k( h( > = k( | k( h( >, H( | k( h( > = h( | k( h( > 
The representation reduces to r-dimensional multiplets. Combining multiplets implies the use of coefficients equivalent to the Clebsch-Gordan coefficients.

The commutation relations with the infinitesimal generators define the way in which operators transform. In particular [S, Xi] = 0 (i implies that S is invariant (a scalar).

In the remaining part of the present lecture we deal with transformations of which we know the commutation relations without requiring that the corresponding algebra be associated to a Lie group of continuous transformations. 
Identical particles
We shall accept without demonstration that boson (fermion) states must be symmetric (antisymmetric) in the exchange of two identical particles.

Let Pi define a permutation of n identical particles 

       (1 2 … n) 
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There are n! different permutations. We call a transposition Tij the exchange of i and j. Pi is obtained from a product of T’s , a product having a well defined parity. 
One can see that 
[image: image61.wmf]1
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ij
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 implies that if Pk|u>=ck|u> then ck =(1 (for PkPk†=1).
   Define S = (1/ n!) ( Pk = (1/n!) ( (Pkeven+Pkodd)

       A = (1/ n!) ( (–)p Pk = (1/n!) ( (Pkeven – Pkodd)
where p is the parity of the permutation
Pi Pj is a Pk and ( Pi ( Pj = n! ( Pk
Therefore S2 = S and A2 = A .   S and A are projectors (on symmetric and antisymmetric states respectively). SA = AS = 0
As  Pk–1 = Pk†         S = S† and A = A†
Consider now the boson case, S|(>=|(>:
 ||S|( >|| = <(| S† S|(> = <(| S2|(> = <(| S|(> = (1/n!) <(|(>   

Take <(|(> =1.  Then |n>=( n! S|(> is a n-boson state having <n|n> = 1.
We define the creation operation a† 
by a†|n>( |n+1>.

Then, <n’ | a† |n>( ( n’,n+1  and <n’|a|n>( (n’,n–1 : a is a destruction operator.
We define the normalization by asking a†a to count the number of particles

<n| a†a|n> = n

a†|n> = ((n+1) |n+1>



 
 a |n> = (n |n–1>

The boson commutation relations are therefore [a,a†] = 1; 
A trivial extension to several states gives

[ai, aj] = [a†i , a†j] = 0
[ai, a†j] = (ij       for bosons.

In the case of fermions

|n> = (n! A|(> has the form of a Slater determinant:
(n! A | i1 i2 … iN> =1/(n!   
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a†i a†j |(> = – a†j a†i |(>

ai aj |(> = – aj ai |(>




ai a†j |(> = – a†j ai |(> for i ( j

For i = j,    a a† |(> = 0       if    n = 1        a† a |(> = |(>   if   n = 1


            = |(>   if    n = 0
                     = 0       if   n = 0

Namely, 
[a,a†]+ = 1                     
Hence the anti commutation relations

[ai, aj]+ = [a†i, a†j]+ = 0       [ai, a†j]+ = (ij
for fermions. 

Bilinear products a​†i aj

For i ( j bilinear products a†i aj transfer a particle from state i to state j, for i = j they count the number of particles in that state. 

In both cases they conserve the total number of particles and therefore commute with (i a†i ai 
Let us rewrite the commutation relations as ai a†j = ( a†j ai + (ij   or, 
equivalently, a†j ai = ( ai a†j – ( (ij where ( =+1 for bosons and  = –1 for fermions.
We now show that [a†i aj, a†k al]  = (kj a†i al – (li a†k aj :

a†i (aj a†k) al  = a†i (( a†k aj) al + (kj a†i al

= ( (a†i a†k) aj al + (kj a†i al
= ( a†k (a†i al) aj + (kj a†i al
= ( a†k (( al a†i) aj – (li a†k aj + (kj a†i al
= a†k al a†i aj + (kj a†i al – (li a†k aj
The bilinear products obey therefore a Lie algebra with structure constants

Cijklil = (kj
Cijklkj = –(il    all others being 0.
As ( has disappeared, bosons and fermions obey the same commutation relations.

SU(2), Isospin

Take two states, 1 and 2.
a†1 a1 + a†2 a2 counts the number of particles, N
( + = a†1 a2
( – = a†2 a1
[( +, (  –] = a†1 a1 – a†2 a2 = 2 ( o
[( o, ( (] = (( (
[( (, N] = [( o, N] = 0

The (’s obey the Lie algebra of angular momentum, SU(2). We can diagonalize ( 2 and ( o and classify the states into multiplets |jm> exactly as we did for angular momentum.

Exercise. Calculate ( 2 explicitly. 
“Nuclear” isospin symmetry (as opposed to “weak” isospin, see later) is the symmetry associated with the exchange of a proton with a neutron or conversely. It is a consequence of the independence of the nuclear force on such an exchange. In terms of quarks this corresponds to the exchange of a u with a d. The mass difference between u and d and, more importantly, Coulomb interactions cause isospin symmetry to be imperfect. 
Examples are shown below: 
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                                                      Vector mesons  

  ground state          (=0    J=0+                                                      
          A B10 core + 2 nucleons
Including particles containing an s quark leads to consider SU(3) rather than SU(2). Including charm quarks as well leads to consider SU(4).
Exercise: Compare the cross sections below:

1. pd (  (o He3  and   pd (  (+ He3                
2.  (+ p ( (+ p  , (– p ( (– p  and   (– p ( (o n   

       a) proceeding via the  ( (( = 3/2)  ( p resonance, 

       b) proceeding via the  N*(( = 1/2)  ( p resonance.                                                                                        
SU(3) symmetry
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We now take three states, 1, 2 and 3.
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J+1 = a†2 a3
J–1 = a†3 a2
and circular permutations. 

There are alltogether 6 such operators. Moreover:
T1 = ½(a†2 a2 – a†3 a3)

S1 = a†1 a1


     3 operators
N = a†1 a1 + a†2 a2 + a†3 a3 

Note that T1 + T2 + T3 = 0 ; once we take T1 we cannot take T2 and T3, nor T2+T3=N–T1, but T2–T3 or equivalently 3/2 S1=N/2 –(T2 –T3). 
Namely T2 = ¼ (N – 3S1 – 2T1)    and T3 =¼ (–N + 3S1 – 2T1)
Exercise. Check the table of commutators below: ([line, column])

	
	J–1
	J+1
	J–2
	J+2
	J–3
	J+3
	S1
	T1
	N

	J–1
	0
	–2T1
	–J+3
	0
	J+2
	0
	0
	J–1
	0

	J+1
	2T1
	0
	0
	J–3
	0
	–J–2
	0
	–J+1
	0

	J–2
	J+3
	0
	0
	–2T2
	–J+1
	0
	–J–2
	–½J–2
	0

	J+2
	0
	–J–3
	2T2
	0
	0
	J–1
	J+2
	½J+2
	0

	J–3
	–J+2
	0
	J+1
	0
	0
	–2T3
	J–3
	–½J–3
	0

	J+3
	0
	J–2
	0
	–J–1
	2T3
	0
	–J+3
	½J+3
	0

	S1
	0
	0
	J–2
	– J+2
	–J–3
	J+3
	0
	0
	0

	T1
	–J–1
	J+1
	½J–2
	–½J+2
	½J–3
	–½ J+3
	0
	0
	0

	N
	0
	0
	0
	0
	0
	0
	0
	0
	0
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S1 and T1 commute: we can choose a representation where they are both diagonal. SU(3) is an algebra of rank 2. The J(i are seen to be step operators for S1 and T1. It is quite obvious from the diagram above.

[image: image665.wmf]}

0

K

Take N = 1: The eigenvalues of S1 are 0 or 1. 
Those of  T1 are 0 if S1 = 1, ½  if S1 = 0.
The basic (N = 1) multiplet is a 
triplet 

(sud quarks for SU(3)flavor). 
The SU(3) of the standard  model is a color symmetry, it has nothing to do with SU(3)flavor. 
[image: image666.wmf]s

Besides (sud), there is another triplet representation, (
[image: image63.wmf]d

u

s

). From these two we can build all representations. 

However, we must first learn which structure the multiplets have. 
We note that, in addition to N, there is a second Casimir operator, 
C = J12 + J22 + J32 –⅓(T12 + T22 + T32)
Exercise: show that C commutes with the nine basic operators.
This implies that each multiplet is labeled by to indices. 

For SU(2) we had one Casimir operator (J2) with eigenvalues j(j+1), 2j being an integer. We now have two Casimir operators (N and C) and the eigenvalues of C take the form ⅓(( – ()2 + ( + ( + (( , ( and (  being integers.

( and ( are related to the multiplet structure as follows:

[image: image667.wmf]u

the outside layer has multiplicity 1, the next one
((’=( –1, (’=( –1) has multiplicity 2, and so on until
( or ( = 0 ; then the multiplicity stays constant. 
We can now combine multiplets as we did for 
adding angular momenta since 

T1(1(2) = T1(1) + T1(2),



S1(1(2) = S1(1) + S1(2)

Examples:
Adding two triplets ( 3 = (1, 0) meaning (=1, ( =0)
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(1, 0) ( (1, 0) = (2, 0) + (0, 1)

Exercise: Show that:

 

3 ( 3 ( 3 = 10 + 8 + 
[image: image65.wmf]8

 + 1 (baryons)

       3 ( 
[image: image66.wmf]3

 =   8 + 1

   (mesons)
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Here 
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 and 3 are

defined as shown

on the figure.
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                    3
At a time when we did not know about quarks, nor about charm, the observation of SU(3) symmetry suggested the existence of quarks (see later). Including charm states implies extension to SU(4) symmetry, etc … 

The SU(3) symmetry in the standard model relates to color, it has nothing to do with that discussed here (flavor SU(3)).
Ground state (uds) hadron multiplets are shown below: 

Pseudoscalars mesons (0– top left); Vector mesons (1– top right); Baryon octet (1/2+ bottom left) and decuplet (3/2+ bottom right).
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LECTURE 4
SPACE-TIME SYMMETRIES
The isotropy and homogeneity of space-time imply symmetries with respect to space rotations (3 generators), proper Lorentz transformations (3 generators) and space-time translations (4 generators). In fact they also imply supersymmetry but we ignore it for the time being.
Proper Lorentz transformations, comparison with space rotations
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As illustrated in the table above, proper Lorentz transformations along Oz (Lz) can be seen as rotations around Oz (Rz) in the 
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 . The quantity ( is called rapidity.  In the same way as a rotation by an angle 
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. Traditionally one calls the rapidity y and uses it almost exclusively for the four-momentum:
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In the limit of m<<E, y approaches the so-called pseudo-rapidity,
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In very high energy hadron collisions the secondaries are produced with a uniform rapidity distribution (one talks of a rapidity plateau) reflecting the wave functions of quarks inside hadrons (structure functions 
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Infinitesimal generators

It is left to the student as an exercise to show that the space-time transformations – namely translations, rotations and Lorentz transformations – form a group. It is called the Poincaré group. In order to find its representations we need to know its commutation relations that define the Lie algebra of the group. The commutation relations being the same for the group of transformations and for its representations, we will now calculate them for the former. We start with the rotations (R) and Lorentz transformations (L), taking as examples a rotation around the z axis and a Lorentz transformation along the same z axis. 
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As will be shown below, the generators of translations are the components of the four-momentum. We now calculate their commutation relations with 
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 behave as vectors under space rotations ([Jx,Vy]=iVz). The table below summarizes the infinitesimal generators of the Poincaré group and their commutators [line, column]. 

	
	Jx
	Jy
	Jz
	Kx
	Ky
	Kz
	E
	Px
	Py
	Pz

	Jx
	0
	iJz
	–iJy
	0
	iKz
	–iKy
	0
	0
	iPz
	–iPy

	Jy
	–iJz
	0
	iJx
	–iKz
	0
	iKx
	0
	–iPz
	0
	iPx

	Jz
	iJy
	–iJx
	0
	iKy
	–iKx
	0
	0
	iPy
	–iPx
	0

	Kx
	0
	iKz
	–iKy​
	0
	–iJz
	iJy
	–iPx
	–iE
	0
	0

	Ky
	–iKz
	0
	iKx
	iJz
	0
	–iJx
	–iPy
	0
	–iE
	0

	Kz
	iKy
	–iKx
	0
	–iJy
	iJx
	0
	–iP​z
	0
	0
	–iE

	E
	0
	0
	0
	iPx
	iPy
	iPz
	0
	0
	0
	0

	Px
	0
	iPz
	–iPy
	iE
	0
	0
	0
	0
	0
	0

	Py
	–iPz
	0
	iPx
	0
	iE
	0
	0
	0
	0
	0

	Pz
	iPy
	–iPx
	0
	0
	0
	iE
	0
	0
	0
	0


Translations

Let Ta be a transformation changing a variable ( into (+a, a infinitesimal. Let G be its infinitesimal generator.
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Let 
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 be the observable associated with 
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and |b> be an eigenstate with eigenvalue b that transforms into |b’> with eigenvalue b+a. 


[image: image158.wmf](

)

(

)

ï

þ

ï

ý

ü

¢

-

=

¢

=

¢

¢

¢

+

=

¢

=

b

a

b

b

b

b

a

b

b

b

b

b

X

X

X

X



[image: image159.wmf](

)

(

)

[

]

[

]

1

,

,

1

1

=

X

X

-

X

=

+

X

-

=

-

X

=

X

¢

G

i

G

ia

iaG

iaG

a


For finite transformations
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For a representation of G by a single real number g then 
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 is just a phase change and is an element of U(1).
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Under T the eigenstates of G are simply multiplied by a phase factor.

g and ( are said to be conjugate.

The table below summarizes the properties of conjugate variables. We see that the generators of space-time translations are the components of the 4-momentum.

	Transformation
	Space translations
	Time translations
	Space rotations
	Proper Lorentz transformations

	Generator
	Momentum 
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	Energy ((–1)

–E
	Angular momentum
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	Conjugate variable
	Space coordinate 
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	Time

t
	Rotation angle (
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In the last column one would like to extend the conjugation relation between 
[image: image178.wmf]z

J

 and ( to a relation between 
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 and Argth (. However we need to be careful as [image: image180.wmf]K
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 is not hermitian. To explore this further we need to understand 
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A closer look at Lorentz boosts: Weyl spinors

Not only 
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 is not hermitian but it does not obey the angular momentum commutation relations: [Kx, Ky]=–iJz and not iKz . To make the parallelism between 
[image: image183.wmf]J

r

 and 
[image: image184.wmf]K

r

 more transparent, let us introduce [image: image185.wmf]K

i

J

J

2

r

r

r

±

=

±

  

[image: image186.wmf]†

±

±

=

J

J

r

r

,  
[image: image187.wmf]±

J

r

 is hermitian

[image: image188.wmf](

)

±

±

-

=

=

J

K

i

J

2

1

J

*

*

*

r

r

m

r

r

                      
[image: image189.wmf][

]

[

]

[

]

[

]

[

]

(

)

z

z

y

x

y

x

y

x

y

x

y

x

iK

J

i

2

J

,

K

K

,

J

i

K

,

K

J

,

J

J

,

J

4

±

=

±

±

-

=

±

±

 
[image: image190.wmf][

]

±

±

±

=

z

y

x

iJ

J

J

,



[image: image191.wmf][

]

0

,

4

2

2

=

-

+

±

=

±

z

z

z

z

y

x

iJ

iJ

K

i

K

i

J

J

m

m

       
[image: image192.wmf][

]

0

,

=

±

m

x

x

J

J


[image: image193.wmf][

]

0

J

,

J

=

-

+

r

r

  and 
[image: image194.wmf]±

J

r

 obeys the angular momentum algebra. This makes explicit the extension to an angular momentum algebra including imaginary rotations.
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 we can use two different representations to describe a spin ½  
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In the first representation (the (’s are the Pauli matrices) [image: image197.wmf]J
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 and [image: image198.wmf]K
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 are equal, in the second they are opposite. Under parity (the transformation associated with a change of sign of the space axes,
[image: image675.wmf]{

q

q

o

p

 
[image: image199.wmf]1

2

,

1

,

1

,

-

=

=

=

=

=

P

P

P

P

PP

P

P

†

†

†

, eigenvalues ±1)
[image: image200.wmf]J

r

 is invariant while 
[image: image201.wmf]K

r

 changes sign (
[image: image202.wmf]J

r

 is a pseudovector, 
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 is a vector): parity changes from one representation to the other. This means that we must use both representations if we insist on describing parity eigenstates: we see already why we shall need four component spinors to describe electrons. When using only one representation, we have Weyl spinors (2-components). 


Consider a massive particle at rest and apply a Lorentz transformation having (= Argth ( along Oz ( one talks of a “boost”). 
As E= m and  pz=0,      
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More generally, any 2 states having px= py= 0 can be transformed into each other using 
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In the case of a massless particle, m=0, E=p,
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. As e( > 0 a Lorentz transformation can not change the sign of Pz, it cannot even bring the particle to rest. The two subspaces of states having Pz > 0 and Pz < 0 are globally invariant under Lorentz transformations and correspond therefore to the eigenstates of Kz , one with Kz > 0 , the other with Kz < 0 . Therefore we have the situation below:
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 are both vectors). It changes sign under a parity transformation. 

Covariant spin, spin states of massless particles

In the case of massive particles, we might define their spin in their rest frame but this is not possible for massless particles. Moreover we would need to understand how the spin transforms. We may rather seek the Casimir operators of the Poincaré group. One is obviously m2=E2–P2 ; the other one is expected to be related to spin. Indeed the operators 
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  are the components of a four-vector called the covariant spin and its square, 
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, is the second Casimir operator we were looking for. 
Exercise: check that it is true by calculating the commutators of W with
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 : helicity is simply related to the covariant spin.

For a massive particle at rest in a state 
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, i.e. the covariant spin reduces to the usual spin multiplied by m and the eigenvalues of its square, the Casimir operator, takes the form – m2 j(j+1).
Note that the four-momentum and the covariant spin are orthogonal:  
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For a massless particle, we have in addition 
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 are two light-like four-vectors which are orthogonal: they must be collinear. Indeed they can be written 
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Hence the important results:

– the covariant spin of a massless particle is collinear with its four-momentum 
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– ( is the helicity of the state and defines it completely. However, as 
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 is a pseudovector and 
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 a vector, we need ± Λ to describe eigenstates of parity.

– The spin states of a massless particle are therefore two: 
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 where j is the spin of the particle. For massless vector bosons such as the photon and the gluon we have 
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Homogeneous Lorentz group and SL(2C)

The Poincaré group is the whole group (space rotations + proper Lorentz transformations + translations in space-time), the homogeneous Lorentz group is the subgroup that excludes translations.

To each 4-vector x, of components x0, x1, x2, x3, associate a 2x2 hermitian matrix X having 
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 and repeat the analysis that was made in the SO(3)/SU(2) case.  
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This is the same relation as was found in the SO(3)/SU(2) case. However, now, TrX  is no longer 0 and A is no longer unitary. 
The A matrices form a group called SL(2)C (for special, linear, in 2 dimensions, complex). Here again the four matrices (A, (A* correspond to the same (. They form a non unitary representation of the homogeneous Lorentz group. However, now, contrary to the SO(3)/SU(2) case, they are no longer equivalent: the two complex conjugate matrices correspond to different representations.
In the case of an infinitesimal transformation we may always write A as a linear combination of Pauli matrices: A=1+(( (((( where (( are four complex numbers ((0=1). As DetA=1=(1+(0)2–(k(k2, we need (0=0 (to first order in () namely A=1+(k(k(k with k=1,2,3.
Taking 
[image: image244.wmf]s

s

r

r

r

r

i

K

J

2

1

,

2

1

=

=

, we find 
[image: image245.wmf]l

h

l

e

h

e

r

r

r

r

r

r

r

r

Re

2

Im

2

.

.

1

=

-

=

-

-

=

and

with

K

i

J

i

A

. In the same way as any matrix of SU (2) can be written 
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This illustrates once again neatly that the homogeneous Lorentz group is the complex form of the rotation group SO(3). It also makes the relative roles of 
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Action of a Poincaré transformation on a physical state: Dirac spinors and Dirac equation

A Poincaré transformation consisting of a translation by a four-vector a following a homogeneous Lorentz transformation ( is represented by a unitary matrix U(a,() such that 
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Exercise: show that 
[image: image258.wmf](

)

(

)

å

L

=

L

L

-

n

n

mn

m

P

U

P

U

,

0

,

0

1

 (it is enough to show it for U(0,()=1–i(Jz and 1–i(Kz using the commutation relations calculated earlier).
We have, writing 
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Introduce the boost L(p) bringing the system from rest 
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)

m

p

~

=

 to its p state (massive particle only !) 


[image: image262.wmf](

)

(

)

(

)

(

)

p

jm

p

L

p

L

p

L

U

p

jm

p

L

U

U

jmp

U

~

)

(

)

'

(

)

'

(

,

0

~

)

(

,

0

,

0

,

0

1

L

=

L

=

L

-


but 
[image: image263.wmf])

p

(

L

)

'

p

(

L

1

L

-

 is a rotation (because it conserves 
[image: image264.wmf]p

~

), call it R
             
[image: image265.wmf]p

~

'

p

p

p

~

)

'

p

(

1

L

)

p

(

L

¾

¾

¾

®

¾

¾

®

¾

¾

¾

®

¾

-

L



[image: image266.wmf](

)

(

)

å

å

=

=

L

'

'

'

'

'

'

~

'

)

'

(

,

0

,

0

m

j

m

m

m

j

m

m

p

jm

R

p

jm

R

p

L

U

jmp

U


Hence the result:

[image: image677.wmf]'

q


The effect of a Poincaré transformation separates in three factors: a phase factor for the translation, a change of eigenstate 
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 and a rearrangement of the spin components. We now concentrate on the latter and consider the action on the spin components of L–1(p) (bringing the particle to rest). Writing two-component spinors 
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, we define two states having momentum p but their spin in its rest state:     
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Then, 
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Watch that we write  A(()|( , p’ >L ={ A(()|( , p’ >}L =A(L–1(p’ ))A(() |( , p’ >

Take Oz along 
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Noting that A(1–i(K)=1+((/2  and Ā (1–i(K)=1–((/2
We then have 
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Note that an infinite momentum state of positive helicity has (1=1, (2=0 and is therefore a pure (R state. Conversely an infinite momentum state of negative helicity is a pure (L state. Note also that when a particle, in a ((1,(2) state at rest, is boosted in the positive direction, the ratio (2/(1 gets multiplied by a factor e(. 
From the above expressions of (L and (R as functions of (  we obtain the relation (Dirac equation) that relates (L and (R :
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which can be written in the general case:
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These results are conveniently summarized in a compact form by introducing four-component Dirac spinors
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We then have 
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The relations 
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Writing 
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 we get the Dirac equation in its usual form 
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One often introduces the Feynman dagger notation 
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Watch that p(=i((=i( /( x(=(i( /( t,–i(), a perennial headache. We now take the hermitian conjugate of the Dirac equation:     
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Namely 
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Multiply the first one by 
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We see that the current 
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 obeys a continuity equation 
[image: image306.wmf]0

j

=

¶

m

m

. It is a very general feature (Noether theorem) that whenever there exists a symmetry leaving the action invariant, there exists a current 
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 is an invariant (“charge” conservation). When extending Dirac equation to include an electromagnetic field defined by its 4-vector potential A( we need only to replace p by p–eA, namely 
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 in the Dirac equation (we shall discuss that later, in the next lecture, in connection with gauge symmetry). We can repeat the calculation (exercise) and find that the A( term drops in the expression for the current. We then can write the Dirac equation (multiplied by the adjoint on the left)
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The second term of the lhs describes the interaction of the current with the field. The results above illustrate the properties of invariance of the Dirac equation. In particular, 
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More generally one can check the following transformation properties:  
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In the last line we used 
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Writing Dirac equation for massless particles gives 
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giving non-trivial solutions for 
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 in which cases (L and (R are eigenstates of (z having opposite eigenvalues: For pz=p0 , (L and (R are respectively negative- and positive-eigenvalue eigenstates of (z, namely left-handed and right-handed respectively. For pz= – p0  , (L and (R reverse their spin and therefore remain left-handed and right-handed respectively. Dirac spinors reduce to Weyl spinors having different handedness.
Charge conjugation, antiparticles

In Dirac equation  
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we may change 
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(the terms in m and in 
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which reduces to 
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Namely Dirac equation implies a Klein-Gordon equation with 
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Namely, in addition to the Klein-Gordon terms we have a new term 
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 that describes the interaction between the electromagnetic field and the spin of the particle.

Returning to the negative energy solutions we note that 
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 is a solution of the Dirac equation with positive energy E, 
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 is a solution with opposite energy, –E. In the free case (A( = 0) all we need to do is to combine 
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 has now the wrong sign.  This suggests associating with each fermion an “antiparticle” of the same mass and spin but having opposite charge. Then a negative energy solution of the particle is a positive energy solution of the antiparticle. Indeed each known particle is associated with another known particle, its antiparticle, having such a property.

The four components find a clear interpretation in term of spin (2 components) and charge conjugation (2 components) and there is no problem of negative energies any longer. One can see that 
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 is the time reversal operator and the product CPT, charge conjugation(parity(time reversal is a perfect symmetry. The best test of CPT invariance is obtained on the 
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. Recently anti-hydrogen atoms have been produced in large quantities opening the door to a test of CPT on the energy levels of anti hydrogen.

A comment on massless fermions
By multiplying Dirac equation on the left by the adjoint, we saw that 
[image: image351.wmf](

)

(

)

0

=

-

-

¶

y

y

y

g

y

y

g

y

m

m

m

m

m

eA

i

. The lhs of this equality is the Lagrangian density, L. Each of its three pieces is a scalar. To show that the first two are scalars, it is enough to show that 
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Under A, (I,(3) becomes ​(I+((3, (3+(I) and (I,–(3) becomes (I–((3, –(3+(I): 
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We see that 
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Writing ((=(1,
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=ΨL†i((((ΨL+ΨR†i((((ΨR . Note that this term does not couple the left and right components, it treats them as different species.
The mass term 
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 can similarly be written  m (ΨL†ΨR + ΨR†ΨL).

Let us now assume that the electron is massless. We have four particles, the electron left, e–L , the electron right, e–R , the positron left, e+L and the positron right, e+R . We may, as usual, call e–L and e–R particles. Then, their antiparticles are e+R and e+L respectively. But we may as well call e–L and e+L particles in which case their antiparticles are e+R and e–R respectively. 

With this second convention, which we now retain, all fermions are left-handed, all antifermions are right-handed. We would then like to rewrite the Lagrangian density using left-handed components exclusively. This means to introduce the charge conjugation operator. Let C= –i(y, χL=CΨR* and χL*=CΨR.
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. Note that C= –C–1= –C†= –CT= C*;  C(( C–1=((T ;  C(( C–1=( (T    
Then ΨR= –C χL* and ΨR†=χLTC 
and ΨR†i((((ΨR =  (χLTC)i(((( (– C χL*)=χLTi((T(( χL* = – χL†i(( (( χL  (since it is real). Similarly ΨR†(( eA(ΨR=– χL†(( (–e)A( χL (Ψ and χ have opposite charges). 
The Lagrangian density is made of two independent pieces of the form:

 L = Ψ†(( (i(( – eA()Ψ, one for  ΨL and one for χL.  

Consider now the mass term m (ΨL†ΨR +ΨR†ΨL). Contrary to the kinetic term, it does couple the left and right components. It is only for massless particles that we are entitled to consider left handed fermions as particles and right handed fermions as antiparticles. One may still write the mass term in terms of left handed components exclusively but it does not allow for a different mass for each of the two species, Ψ and χ , since the Lagrangian density does not split in two independent pieces. 
ΨL†ΨR = –ΨL†C χL* ;  ΨR†ΨL=χLTC ΨL= χL†C ΨL* .
We shall come back to this in the last lecture when introducing supersymmetry.
LECTURE 5
GAUGE INVARIANCE
Maxwell equations, classical theory

Maxwell equations describe the evolution of an electromagnetic field (
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implying the continuity equation.
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and integrating over space (no charges at infinity)
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expressing the conservation of the electric charge. 

The fields may be written as an antisymmetric tensor.
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Maxwell equations, together with the continuity equation, take then the covariant form below ( ε being the completely antisymmetric tensor):
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The four-potential 
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Note the expression of the energy-momentum tensor,
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and that of the 4-momentum of the field:
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It should be noted that any vector field may be written in a unique way as: 
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 are called the longitudinal and respectively the transverse part of the field. Maxwell equations, 
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Changing the gauge

Adding a gradient to the 4-potential, 
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Changing the gauge leaves the fields unchanged. If 
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[image: image403.wmf]m

m

m

ieA

D

+

¶

=

.

Dirac equation reads 
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But we want Ψ’ to obey Dirac equation, 
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And, as the first term is zero, we need 
[image: image408.wmf]q

a

e

=

.
Let us summarize:

1. We made a transformation of our physical system by changing the gauge, i.e. by subtracting from the 4-potential the gradient of an arbitrary function 
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2. We wrote that this transformation leaves the physics unchanged, namely that the transformed state must obey the Dirac equation written for the transformed 4-potential. 

3. We found that the unitary transformation relating 
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We also found that 
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 is a scalar. Note that U(1) is abelian. 
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We may now tell the same story backwards. We start by introducing U(1) symmetry under transformations exp(iQθ), where Q is the electric charge. U(1) is called the gauge group (it is a Lie group with zero structure constants). Next we require gauge symmetry, meaning that we require invariance under exp(iQθ). We call it “local” gauge invariance because we want to choose θ(x) as we please at any point x in space-time (if we had a same θ at all points, we would talk of “global” gauge invariance). Of course we find that it is not possible: 
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. If we insist on invariance, we need to introduce a 4-vector 
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Namely we need to introduce the photon, a massless vector boson, which will be called a “gauge boson” for this reason. The new term in 
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 is the Dirac current (see preceding lecture). It describes the interaction between the photon and the Dirac current which we can pictorially represent by the above diagram that we shall later associate with a Feynman diagram.  

Having introduced a new particle, a massless gauge boson – the photon – we need to describe a free photon (as Dirac equation describes a free fermion). We could repeat the analysis we made of the Dirac equation for spin 1, which would mean finding the quantum equivalent of Maxwell equations. Here we only state the result, namely the photon kinetic term reads:
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Exercise: show that
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Generalization (Yang and Mills)
The generalization to a gauge group G (no longer supposed to be abelian) is straightforward. Let 
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 be the infinitesimal generators and 
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We can see that the requirement of gauge invariance (local of course !) implies the introduction of as many vector bosons as there are infinitesimal generators (linearly independent) and the covariant derivative reads:
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where 
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) are the massless vector bosons and g (equivalent of e) is the coupling constant. (Here 
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 For infinitesimal transformations we have:
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The leading term is 
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Finally the crossed terms in ∂μ reduce to 
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which we want to be equal to 
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 EMBED Equation.3  [image: image449.wmf](
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. Instead of simply adding a gradient as we did with the photon (
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Like in the U(1) case, the scalar 
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 has acquired a new term that couples the Dirac current 
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These new terms result from the non abelian nature of the symmetry group. They were of course absent in the U(1) case:  photons do not have self-couplings.
A few more comments
The emphasis of the present lectures is on symmetries and invariances. Discussing seriously the dynamics, which would imply doing some field theory, is clearly beyond their scope.

Yet two elementary and hand waving remarks may be worth doing at the present stage.


1. The evolution and properties of a system are completely described by its Lagrangian. The Lagrangian is the extension to quantum theory of the Lagrange function of classical mechanics (the action being the integral over space-time of the Lagrangian density). We have already identified a few different scalars which we briefly recall:
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 is the Lagrangian of the free gauge boson, including both its kinetic term and self-couplings.
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 is the interaction term between the fermion (current 
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) and the gauge boson 
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These invariants are in fact the building blocks of the Lagrangian which is simply a sum of such terms (with some numerical constants in front).
2. The fact that massless vector bosons (no longitudinal components) couple to a conserved current is quite a general property. Conversely one might ask is the massless vector boson coupling the only one associated with a conserved current? the answer is no: there is another way that implies the existence of massless scalar bosons (Nambu-Goldstone). In fact, when both Nambu-Goldstone scalars and massless gauge vectors are present they can join into a massive vector boson (Higgs mechanism). See lecture 7.
Feynman graphs for pedestrians

How to calculate a cross-section or a decay rate when one knows the elementary couplings (such as 
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 in the U(1) case)? When the coupling constant is small enough (here 
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) one can make a perturbative calculation, i.e. a development in powers of the coupling constant, using Feynman graphs. An elementary and hand waving introduction is given below.
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The elementary electron-photon coupling 
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 was pictorially represented as a little graph with the straight line standing for the electron (more correctly for its Dirac current) and the wavy line for the photon (more correctly for its four-potential). Somehow, this elementary coupling must be related to transitions such as:
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None of these can be realized, however, because they do not conserve energy-momentum. For example 
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 can be described in the rest system of the 
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 but a photon can not have zero momentum. It would take a photon with mass 
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 to obey energy-momentum conservation. Similarly for 
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 in the rest frame of the initial electron: if the momentum of the photon is p, the energy of the final state electron must be 
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, which is only possible in the trivial case
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However, let us now consider the interaction between an electron and a positron. We may see it as proceeding in two steps 
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photon in the intermediate state may have a mass 
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 if it is for a very short time 
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: we may then construct such a wave packet, Heisenberg uncertainty relations allow for it. 
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The photon in the intermediate state is said to be “virtual” or “off mass shell”. The diagram above is just the joining of two elementary graphs as shown on the right if we take the convention that changing the direction of a fermion line means taking its charge conjugate (particle 
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 antiparticle). 
Now we can think of other processes to describe 
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Here again the photon needs to be virtual, off-mass shell. Calling 
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 the outgoing 4-momenta we have 
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One calls 
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The virtual photon 4-momentum is p1+p2 in the 
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[image: image500.wmf]-

+

-

+

-

+

®

®

e

e

e

e

e

e

g

 case. Namely the virtual photon mass squared is
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 (always negative!) in the second case. 

We expect the cross-section to be smaller the more 
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 deviates from zero, the real photon mass (because of Heisenberg uncertainty relations). This would imply that the second process is important at small |t| values, i.e. at small scattering angles, and that the first process decreases with increasing center of mass energy. Indeed, the total cross-section is proportional to 
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We may still think of other, more complicated processes such as the ones depicted on the figures below:
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Diagrams  
[image: image505]   and        contain only 2 vertices but the more complicated diagrams contain 3 or 4 vertices instead of  2.   
They are called “higher order” diagrams while the latter, the simplest diagrams, are called “lower order” or “leading order” or “tree level” diagrams. To the extent that the coupling constant is much smaller than 1 and that it contributes as a factor at each vertex these appellations are meaningful. 

Contrary to the above hand waving arguments, the Feynman rules are rigorous prescriptions, demonstrable from first principles, which: 

i) State that the transition probability (cross-section, decay rate) of a given process 
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 is the square of the modulus of the sum of all possible transition amplitudes that lead from I to F. Each possible transition amplitude is associated with a Feynman diagram as explained below.
ii) [image: image691.wmf]q

Give the recipe to calculate the transition amplitudes associated with each possible diagram. All possible diagrams means all diagrams (an infinity) made of the elementary couplings present in the Lagrangian (such as:   
associated with ejμAμ in the U(1) case) and having the 
initial and final state particles (in 
[image: image507.wmf]I

 and 
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, external lines) on 
mass shell and obeying energy momentum conservation at each vertex. On the contrary, the particles associated with internal lines do not need to be on mass shell. The recipe to calculate the transition amplitude associated with each diagram gives some numerical factors and a phase, one power of the coupling constant for each vertex and one “propagator” for each internal line accounting for the fact that the transition amplitude decreases when 
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 departs from the rest mass 
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 associated with the particle on the internal line. The contribution of a virtual particle having 4-momentum q and real mass m is, roughly speaking, 1/(q2–m2). As the transition amplitudes associated with different diagrams many have different phases, interference effects have to be expected. In practice, all this makes sense only if the coupling constant is small enough and if the number of diagrams to be considered beyond leading order is reasonably low. It is not always the case, a notable exception being QCD at large distances (see lecture 6).
Exercise: Discuss and comment each diagram below (solid lines are for 
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, wavy lines for photons, no other coupling than 
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is allowed). Beware that some of these diagrams may make no sense !
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LECTURE 6
THE STRONG INTERACTION
Prequark studies

Radioactive sources and cosmic rays were the first tools of particle physics. But it is only with the availability of particle accelerators in the late forties that the understanding of the strong interaction made important progress.

Accelerators were first used in the “fixed target” mode, meaning that a beam of particles is directed onto a target with which it interacts. They are now often used in the “collider” mode, meaning that two particle beams are directed again each other to study their head-on collisions.

Primary beams are usually proton or electron beams, the only two charged stable particles abundantly available in nature, and directly obtained from ionization of hydrogen gas in the accelerator source. They may also be ion beams, implying a partial ionization followed by pre-acceleration and stripping to obtain the fully ionized ion. 
An intense primary beam directed onto a target may produce enough secondaries to collect a secondary beam having not too large a dispersion, a size and a divergence, and strongly enriched in a given particle type (“separated”). Examples are neutral beams such as neutrons, ( hyperons, neutrinos, charged hyperon beams ((, (, (), meson beams ((, K), ( beams, radioactive ion beams and, of particular importance for feeding colliders, positron and antiproton beams. In the latter two cases it is essential to achieve very high quality beams, which requires a major increase of the phase-space density referred to as “cooling”.

Primary beam intensities are in a few (A range, up to mA for very intense beams. This means ~ 1013 to ~ 1015 particles/s (remember that 1 Coulomb= 6.1018 charges, of the order of 10 (g of protons). Secondary beams have much lower intensities, typically 104 to 108 particles/s.

A proton of energy E and a proton at rest have
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 while two protons of energies E in a head-on collisions have 
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for E>>M. Only colliders make it possible to reach very high energies. 
A 1 (A beam having a radius of 1mm and E>>M, i.e. v~c, has a density of 6x1012/(3x1010(10–2)= 6000 particles/cm3. Compare to ~ 6d 1023 particles/cm3 in a solid target of density d, this is ridiculously small. However, colliders take advantage of multiple traversals, the same particle traversing the collision region many times per second (in a 3 km circumference ring, 105 times per second) bringing the effective beam intensity up to the ampere range. Yet, colliders are the only way to reach high c.m. energies, their problem is intensity in order to reach adequate “luminosities”, a concept that we now explain.

A beam of dNb/dt particles/second hitting a target (assumed broader than the beam) containing dNt/dS particles/cm2 (assumed  low enough to avoid shadowing effects) produces interactions at a rate R proportional to the “luminosity” L=dNb/dt(dNt/dS. The proportionality coefficient, ( , has dimension of an area and is called the “cross-section” of the process under study. This name is appropriate: it is indeed the apparent, or better effective, cross-section that each target particle offers to the beam for the process under study. The contribution of the detector is described by another parameter, (, called the detector acceptance, such that the detected event rate is R = (L(. The physics of the interaction is fully contained in (, the experimental conditions are fully described by (L.

Collider luminosities are in the 1030 to 1033 cm–2s–1 range, a very low value for fixed target experiments. For example a nanoampere beam hitting a 10 cm long liquid hydrogen target gives dNb/dt = 6x109s–1, dNt/dS = 6x1023x0.07x10= 4x1023 cm–2, L = 2.4x 1033 cm–2s–1.

A cross section can be defined for each possible channel, the sum over all possible channels being the total cross section. For example in a pion-nucleon two-body collision, (+N ( (’+N’ , a cross section can be defined as a function of s and t for each spin (conveniently helicity) and isospin configuration of the initial and final states. In practice a cross section is the product of a phase space factor, that accounts for kinematical constraints, by the modulus squared of a transition amplitude T that connects the initial state 
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 and the final state 
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 is the same quantity (a complex number) as was considered in the earlier discussion on Feynman graphs.
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Hadron collisions produce various secondaries, some of which were known before from cosmic rays, some of which were not. Their study shows that they can be classified according to the values taken by some quantum numbers, such as strangeness, baryon number, isospin, that appear to be conserved. In today's words, these conservation laws are simply understood in term of quarks. For example, a reaction such as 
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, giving evidence for strangeness conservation, is seen as shown below:
Hyperons, kaons, pions, have a relatively long lifetime because they are stable against the strong interaction and decay weakly ((-decay): 
((n) = 887s (the very small phase-space available is responsible for this very large value), 
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 (again relatively large values due to the V–A nature of the weak decay, see next lecture),  
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. Note that a proper lifetime (i.e. measured in the particle rest frame) of 3.10–10s at an energy E=100Mc2 (M being the mass of the particle) means a decay length of 1m.  
But hadron collisions produce also resonances, namely excited baryonic and mesonic states, that decay via the strong interaction against which they are unstable and have widths of several MeV: 
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:
( =10–10s means (=6.6 10–12 MeV and (=100 MeV means ( =6.6 10–24s, illustrating   the huge gap between stability and instability against the strong interaction. Resonances may be seen in the s-channel (as a bump in the cross-section as a function of incident energy) or in the final state (as a bump in the invariant mass distribution of their decay products). An example of each case is described below.

The three reactions, 
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  (the first two are elastic scatterings, the third is charge exchange) show broad cross-section peaks as a function of the pion incident energy, centered just below 200 MeV kinetic energy, around 
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. They correspond to an s-channel resonance, meaning that the reaction proceeds at resonance via an intermediate state of mass 1230 MeV/c2. An isotopic spin analysis provides a check of isospin invariance and assigns an isospin to the resonance.
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Therefore, with obvious notations,
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For an isospin ½ resonance, T3/2 = 0  and:
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For an isospin 3/2 resonance:
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Experimentally, it is the second relation that is obeyed: the resonance has isospin 3/2 and it is called the ( resonance.

[image: image694.wmf]l

Examples of resonances in the final state can be taken from reactions producing several pions, such as (1) 
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. One can, for each detected and measured event, calculate the two-pion invariant mass in reaction (1) and the three-pion (total charge Q) invariant mass in reaction (2). The results show two resonances: the vector mesons ( (isovector) and ( (isoscalar). 
At a time when the accelerator energies were too low to allow for the production of charmed hadrons (not to mention b and t !), all observed hadrons were found to fit nicely in SU(3) multiplets as was illustrated in chapter 3, suggesting that baryons are made of three quarks, u, d and s, and meson of quark-antiquark pairs. The different quark mass values and Coulomb effects account well for the mass splitting within each multiplet. Evidence for flavor independence was overwhelming.
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Another important result was that cross-sections are typically in the few mb range, with total cross-sections in the fm2 range, indicating that they are dominated by hadron sizes (the nucleon radius was known since long from form factors measured in electron scattering and from nuclear physics). Indeed the transverse momenta of produced secondaries were found to have exponential distributions falling with a characteristic mean value of the order of 200 MeV/c, as expected from the Fourier transform of a 1 fm radius disk. The energy scale, as given by the level spacing between different multiplets, was also in the few MeV range.

Quarks and color
The idea that hadrons are made of quarks met two major obstacles: first, no free quark has ever been found in spite of extensive effort to look for them, and second, states made of three identical quarks having their spins parallel to each other (J=3/2, (++=uuu, (–=ddd  and (–=sss) must have a symmetric wave function in disagreement with the Pauli principle stating that fermion states must be antisymmetric. Moreover accelerator energies had to be large enough to allow for looking into the hadrons with a high space resolution, say better than 0.1 fm or so, implying transverse momenta in excess of 2 GeV/c: only when such accelerators became available has it been possible to reveal the presence of small size constituents within the nucleon. 
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The first evidence for point like scattering centers inside the nucleon was from deep inelastic electron scattering at SLAC. At large transverse momentum transfers of the electron to the nucleon, one expects the electromagnetic interaction to proceed via photon exchange with one of the quark constituents rather than with the nucleon as a whole. The angular distribution of the scattered electron or, equivalently, the momentum transfer q distribution, should then no longer be steep, because being governed by the nucleon form factor, but should be much flatter with a power law characteristic of point like scattering centres as in e–e scattering (Mott cross-section). This is exactly what was observed.

The second breakthrough was the evidence for “color”. The idea was that each quark could exist in three different states labeled by an index associated with a new quantum number, color. This hypothesis gives an elegant solution to the problem of the ( baryons: it is sufficient to write a wave function of the form 
[image: image546.wmf]­

­

­

g

b

a

abg

e

q

q

q

, where (, ( and ( are color indices. The first evidence came from a measurement (again at SLAC) of the ratio R = ((e+e– → hadrons)/((e+e– → (+(–).
 To the extent that all produced hadrons have their source in a quark-antiquark pair created by the virtual photon (we come back to this later) one expects 
[image: image697.wmf]P


R/NC =(2/3)2+2(1/3)2= 2/3 below the charm threshold, where NC stands for the number of different colors. The experimental R value is indeed 2, as expected for three colors.
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Another test is obtained from the decay (o → (( . The decay amplitude is multiplied by NC, the decay rate by NC2. This takes nicely care of the factor of nine disagreement that exists between the naive calculation (Nc=1) and the experimental value. Further evidence comes from the weak decay rates of ( leptons. The branching ratio 
( (( → hadrons)/((( → leptons) 
should be multiplied by Nc as is indeed experimentally measured. 

lt was then legitimate to attempt a description of the strong interaction by requiring gauge invariance in connection with the SU(3) color symmetry obeyed by quarks. This theory is called quantum chromodynamics (QCD), reminiscent of quantum electrodynamics (QED) constructed in the same way on U(1).
Quantum Chromodynamics
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The basic quark and antiquark triplets contain now three quarks (or antiquarks) having a same flavour and three different colour indices. In this paragraph we neglect completely quark flavors, they are ignored (and unchanged !) by the strong interaction, all what we are going to say has to be understood for one flavor and should be repeated to cover the six flavors. The quarks have fractional charges (+2/3 for u, c, t and –1/3 for d, s, b) but this also is irrelevant to the present section.  
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Gauge invariance generates eight massless gauge bosons, the vector gluons, with a well defined coupling to quarks and, in addition, triple and quadruple self-couplings as has been described in lecture 5. 

Contrary to photons in QED, the QCD gluons are colored: a blue-antired gluon will transform a blue quark into a red quark, while a photon does not change the electric charge of the fermion to which it couples. A very important consequence is that, contrary to photons, gluons interact between themselves.
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The fact that gluons are colored is a consequence of the fact that SU(3) is not abelian, making QCD very different from QED. The most spectacular difference is that the force between two colored particles increases with distance instead of decreasing as is the case for QED. Only non-abelian symmetries can exhibit this feature, but not all of them do.  
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 This has very important consequences. Feynman graphs such as those below enter any perturbative series, and, as they can be attached one after the other, an infinite number of times. When the virtual particles in the loop are nearly on mass shell, i.e. for very low momentum transfers, one may expect divergences. In the case of QED, as this corresponds to large distances and therefore weak forces, it does not have very important consequences. But it is no longer the case in QCD. Technically, the way to handle these singularities is, very crudely, to fix a mass scale (  arbitrarily beyond which the perturbative expansion will be cut-off (renormalization group). This makes it possible to calculate perturbatively processes with high momentum transfers q, the "bare" coupling constant g2 being replaced by an effective coupling constant (s, depending on q, that is of the form 
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The figure shows measurements of the effective coupling constant, (s, of the strong interaction (one talks of a “running coupling constant”) as a function of (. It must be realized that each point corresponds to a different kind of measurement, each time probing different scales. The agreement with expectation (the full line) is really remarkable. 

In QED, b is negative and the effective coupling decreases at large distances (small q’s). In QCD, b=(33–2Nf )/2(, where Nf =6 is the number of flavors, yielding b positive. The effective coupling tends logarithmically to 0 when 
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 . This means that for large momentum transfers, or equivalently at short distances, the quarks behave as if they were free inside the hadron: this is called asymptotic freedom and corresponds to the regime where perturbative [image: image703.wmf]2
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expansions can be made. On the contrary, when 
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 the effective coupling increases to infinity, this is called sometimes infrared slavery: it results in the confinement of quarks inside hadrons and prevents any reliable perturbative calculation at large distances (or small q values). One can have a pictorial illustration of confinement by imagining that one tries to pull apart the quark-antiquark pair from within a meson. In this process the field becomes stronger and stronger up to the point where it can create a new quark-antiquark pair and one is then left with two mesons instead of one to start with: the quarks have remained confined within mesons and the pulling energy has been used to produce a new meson. 
In the next two paragraphs we consider in more detail how all this works in the two regimes of asymptotic freedom (perturbative QCD) and of confinement. One should note that a reasonable value for ( is expected to be in the 200 MeV range, corresponding to distances in the fermi range, i.e. of the order of hadron sizes.
Large momentum transfers: Perturbative QCD 
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Let us return to e+e– annihilation into hadrons. Because we assumed a large value for s, i.e. a photon far from mass shell, it is justified to couple it to a quark-antiquark pair rather than directly to the hadrons. The short distance part of the interaction (hard) is there (in this case it is a QED coupling, not a QCD coupling), while the process governing the transformation of the quark-antiquark pair into hadrons (called hadronization) is a large distance (soft) process. What it means in practice is that we can factor out the hard part, which can be described perturbatively with Feynman graphs connecting point like elementary particles (quarks, leptons and gauge bosons), from the soft part that connects quarks to hadrons. In the case under consideration, the soft part is contained in functions Gkl(x) that describe the hadronization process by giving a measure of the probability that a “parent” quark of flavor k and momentum p yield a hadron “child” of type l and momentum xp among its hadronization products.

Such an assertion assumes that G depends only on x, not on p, one talks of scale invariance. Scale invariance is strictly obeyed at infinite momentum only, in which case there is indeed no scale left, but in practice it is only approximately obeyed. In order to have a convenient image of the hadronization process, it is useful to work in the quark-antiquark (or e+e–) rest frame and to measure longitudinal and transverse momenta of the produced hadrons with respect to the quark-antiquark pair momenta. Then, the hadron transverse momenta distributions are typical of a soft process, with mean values of order 200 MeV/c and exponentially decreasing; while the longitudinal momenta distributions behave as 1/p// (corresponding to a 1/x behaviour of G(x) as x → 0) or, more conveniently, their rapidity distributions are flat (remember that dy=dp///E and E~ p// >> mT). One refers to this situation as “longitudinal phase space”. It is characteristic of all hadron interactions at high energy (s large) but in the soft regime (no large transverse momentum secondary). One talks of a “rapidity plateau” to characterize the rapidity distribution. 
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On the rapidity plateau one may conveniently distinguish three regions: 
– the regions y<<–1 and y>>1 are called the quark and antiquark fragmentation regions and correspond to particles having |p//|>>pT , namely they are collimated within two narrow cones referred to as “jets”. The particles in a given jet are reasonably associated with one of the parent quarks, they kind of make it possible to “see” a quark. 
– the particles in the intermediate region around zero rapidity cannot reasonably be assigned to one or the other parent quark, they correspond to the region where the color of the quark and the anti-color of the antiquark somehow recombine. 
One of the quarks of the pair may radiate a gluon with a large momentum transfer, in which case one may include this process in the hard part of the interaction and the final state will consist of three jets, a gluon jet, a quark jet and an antiquark jet. The ratio between the 2-jet and 3-jet production cross sections will provide a measure of the strong coupling constant (s . When the momentum transfer to the radiated gluon decreases, it is no longer legitimate to treat it as a hard process and it must be included into the soft process, it then becomes the main source of scaling violation for the fragmentation function. The picture we have just sketched in a very hand waving fashion corresponds to what is usually called the “parton model”, where parton is a generic word that describes all possible hadron constituents, not only quarks but also gluons and antiquarks from quark-antiquark pairs. We now turn to this question. 

Consider a deep inelastic electron scattering. Again, as the momentum transfer of the electron to the proton is large, it is justified to separate the hard (QED) coupling of the virtual photon to one of the quark constituents of the proton and to treat the hadronization process non-perturbatively. This means that the hadronization of the struck quark (and to some extent that of what remains of the proton) will be described by fragmentation functions, as we have just introduced. However we now need another ingredient in order to describe the relation between the parent proton and its quark constituents. In analogy with the fragmentation functions, this is done by introducing structure functions Fkl(x) that measure the probability that a hadron of type k and momentum p contain among its constituents a quark of type l and momentum xp. 

One may now repeat more or less all what was said about the fragmentation functions, the structure functions have a 1/x behavior at low x (one refers to the low x partons as “wee” partons) and their implicit scaling form is only approximate: processes such as the radiation of a gluon from a constituent quark, followed by quark-antiquark pair creation, the photon being coupled to one of the pair members, provides a mechanism for scaling violation.
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Structure functions can be studied in many different processes, using both electromagnetic and weak probes (neutrino interactions) and they can be accurately measured. The main result is that a proton is found to consist not only of the three quarks u, u and d that one expects (they are called the “valence” quarks), but also of a number of gluons and quark-antiquark pairs (they are called the “sea”). It is not a very surprising result as the color field within the hadron is large enough to excite such sea constituents. 
It is now possible to have a unified description of all hard processes involving hadrons, the hard process itself being treated perturbatively and the soft processes being phenomenologically described. A large number of different processes, accessible to experimentation, have made it possible to check the validity of QCD in the perturbative regime with an excellent accuracy. The strong structure constant has been measured to a few percent and found to take a same value in all processes that have been studied; as we have seen earlier in the present section, its “running” as a function of q has been observed and found in quantitative agreement with expectation; the elementary QCD couplings have been independently measured and give an excellent description of the experimental cross-sections (at least the quark-gluon coupling and the triple gluon vertex, the four-gluon vertex is difficult to isolate).

The diagrams below illustrate a number of hard processes that have contributed to these observations. It is left to the reader as an exercise to comment each of them (full lines =quarks, photons and gluons as usual, others as indicated). 
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Tree level QCD and QED two-body cross-sections for  massless particles

	Process p1 p2→p3 p4  (cms)
	QCD Graph
	ai
	Ci
	δi

	qα qβ→ qα qβ 

qα qβ→ qα qβ
Møller e±e±→e±e±
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	2(s2+u2)/t2
	2/9
	δαβ
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	2(s2+t2)/u2
	2/9
	δαβ

	
	Cross-term
	4s2/(tu)
	–2/27
	δαδ δβγ

	qα qβ→ qγ qδ
Bhabha e+e–→e+e–

e+e–→μ+μ– 
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	2(s2+u2)/t2
	2/9
	δαβ δγδ
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	2(t2+u2)/u2
	2/9
	δαβ δβδ δγδ

	
	Cross-term
	4u2/(st)
	–2/27
	-

	qα g→ qα g 

qα g→ qα g 

Compton e±γ→e±γ
(Klein-Nishina)
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	Cross-term
	–16
	1/16
	

	gg↔ qα qα ; Note that 

σ(qq→gg)=64/9 σ(gg→qq)

e+e–→γγ
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	4(1–ut/s2)
	–3/16
	

	
	Cross-term
	4
	3/32
	

	gg→gg 

Cross-terms 1 do not contain the 4-gluon vertex, Cross-terms 2 do contain it.

(no QED equivalent)
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	27
	9/8
	

	
	Cross-term 1
	45–(s3+u3–t3)uts
	9/16
	

	
	Cross-term 2
	–3×81/4
	9/8
	


pi are 4-momenta,  p1+p2→p3+p4; θ is the scattering angle (between p2 and p3); q is for quarks, q for antiquarks, g for gluons; s=(p1+p2)2=4p02, t=(p1–p4)2= –2p02(1– cosθ), u=(p1 –p3)2= –2p02(1+cosθ), s+t+u=0, ½s=dt/dcosθ, g2=4πα, |Mi|2=g4Ci ai δi with Ci =color factor(=1 for QED), δi =flavor δ-functions; |M|2=∑i|Mi|2+∑ijReMiMj*, dσ/dt=|M|2/(16πs2),  α, β, γ, δ  are flavor indices.

Large distances: Confinement
The spectacular successes achieved in the hard sector by perturbative QCD make one confident that QCD is indeed the right theory of the strong interaction. Yet, in the soft regime, the problems it raises are still unsolved. Questions apparently as simple as calculating the proton and pion masses, are unanswered. Saying just that is not making justice to the very intensive effort that has been devoted to the field for now more than two decades. It has considerably deepened our understanding of the subtleties hiding behind non-abelian gauge theories. Also, approximate calculations (on a discrete space-time lattice) have been possible and have given useful and sometimes inspiring results. In particular they have predicted the existence of a deconfined phase and that of glueballs, two topics that are described below. Going into such theoretical developments is clearly beyond the elementary scope of these lectures. We shall instead concentrate on some of the experimental avenues that are currently explored after having made some very elementary and general theoretical comments.

A first comment consists in comparing the ratio of the binding energies of composite objects to that of their constituents. In atoms this ratio is a few eV over 511 keV, namely ~ 10–5, in nuclei it is ~ 10 MeV over 940 MeV, namely ~ 10–2, but in hadrons it is a few 100 MeV over only a few MeV in the case of the u and d quarks, namely ~102. This has two consequences: a) one cannot claim that the constituents are quasi-free, we have what we already called infrared slavery, and b) 

the system cannot be considered as containing a fixed number of constituents, the very large potential energy causing pair creation.
A second remark is that we have a very simple theory based on elementary quarks and gluons but it generates excitations that are very complicated objects, the confined hadrons. It must be stressed that a rigorous understanding of the confinement mechanism is to some extent still lacking, the hand waving arguments given earlier cannot be rephrased rigorously in a fully satisfactory fashion.  
A third remark concerns chiral symmetry. Let us ignore for a moment the quarks heavier than u and d and let us neglect the u and d masses. Then, quarks are described by Weyl spinors and nothing connects the right handed quarks to their left handed partners any longer as this was done exclusively by the mass terms. We then expect a complete symmetry between four independent quark species: u and d left and u and d right, this is called chiral symmetry. It turns out however that this symmetry is spontaneously broken in nature, meaning that although the action is chirally symmetric, the ground state, namely the QCD vacuum, is not. It has a vacuum expectation value that is non-zero (~ ( (250MeV)3 ) implying that the left-handed and right-handed quark states have a well defined “orientation” relative to each other (this is called the quark condensate). Saying more in these elementary lectures is not possible, but the reader should be aware that a whole chapter of large distance QCD deals with such matters, with pseudoscalar pions appearing as Goldstone bosons and with the introduction of instantons.

We shall stop here these theoretical comments which have already taken us farther than reasonable and concentrate instead on some interesting experimental explorations of the non-perturbative sector. These include some aspects of modern nuclear physics, the study of structure functions in the soft limit (e-p collisions), the production and study of the deconfined phase, the so-called quark-gluon plasma, and searches for glueballs and hybrids. In the present lectures we shall be satisfied with saying a few words about the latter two.

The quark-gluon plasma
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Lattice calculations predict that at sufficiently high baryonic density and/or temperature, of the order of 150 MeV (~ 2.1012 K), hadronic matter should experience a transition into a new phase where quarks and gluons are deconfined and can move freely with respect to each other. This is the quark-gluon plasma (QGP) where the word “plasma” simply refers to the fact that its constituents carry color. Such a phase transition must have taken place in the early universe, a few microseconds after the Big Bang, near the temperature axis and may also occur on the density axis in the gravitational crunching of neutron stars. In the laboratory, relativistic heavy ion collisions are expected to produce such a QGP state, but with much too short a life time – of the order of 10 fm/c – to make direct observation possible. However, at very high energies, it becomes indirectly observable through quantitative and even qualitative traces left in the set of hadrons that it has produced while cooling down. It should be clear, that quarks and gluons becoming free over a large volume is not in contradiction with what we said before about infrared slavery: the high density guarantees that within this large volume, and therefore over large distances, quarks and gluons are always at small distances from each other!
Such studies are currently made at Brookhaven (RHIC), using a collider that accelerates counter rotating gold beams of 100 GeV per nucleon. This produces energy densities nearing 20 GeV/fm3, more than ten times higher than necessary for the phase transition to occur. In such collisions the rapidity plateau is shorter but higher than in p-p collisions: secondaries have a much harder time to carry an important fraction of the available longitudinal momentum, they slow down significantly in the evolution of the final state: there is no “nuclear transparency”.

Their average transverse momentum is 30% higher than in p–p collisions and as much as 670 charged particles are produced per unit of rapidity, corresponding to a total multiplicity of the order of 7000 particles. In addition, as there are an order of magnitude more valence quarks and antiquarks in the final state than in the initial state, the antibaryon yield reaches 60% of the baryon yield.  
The collision starts by the very rapid (< 1 fm/c) formation of a volume of interacting nuclear matter, the “fireball”, that immediately experiences a radial Hubble-like expansion with radial velocity (T ~0.6, referred to sometimes as the “little bang”. In this expansion secondaries acquire a kinetic energy 
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, heavier secondaries getting therefore a larger radial boost, a feature that has been observed and measured. The thermalization of the fireball is very rapid, again at most 1 fm/c, as can be seen from the azimuthal distribution of the secondaries in collisions where the two ions are not exactly head-on: the “almond” shape of the overlap transverse area does not have the time to be washed out before thermalization and one observes an “elliptic flow” in the transverse plane. When the color-neutral hadrons are finally formed, the hot quark matter has somewhat expanded: measuring its size is done using Hanburry-Brown Twiss interferometry, a method developed fifty years ago for photons at astronomic scales, now being used for identical pions or kaons at the scale of a few fermis. It is a consequence of boson statistics that two identical bosons emitted from a same source cannot be distinguished from each other: they are in a state symmetric in their exchange. This implies an enhancement at small momentum difference of the correlation function (defined as the probability to observe two identical mesons having a given momentum difference divided by the probabilities to observe them independently). The distributions of these correlation functions (one longitudinal and two transverse) are essentially the Fourier transforms of the spatial extensions of the source in the associated directions, a broad enhancement corresponding to a narrow source size. The QGP is measured this way to expand during a long time, between 5 and 7fm/c, before hadronizing at a temperature of approximately 170 MeV, hadronization taking place on the outer shell of the very opaque fireball.

Early thermalization and immediate and long-lasting expansion are therefore clearly established features of the QGP. The evolution of the expanding fireball is very well described by hydrodynamic models and the decoupling temperature is between l20 and 130 MeV/c in good agreement with the predictions of lattice calculations. 

Among the most popular QGP signals one should mention strangeness enhancement, J/( suppression, and jet quenching. A few words are said below to introduce them. 

In the limit of energy densities large enough for the mass differences between the three lightest quarks to become negligible, one would naively expect having equal numbers of up, down and strange quarks and antiquarks at the time of hadronization (in addition to the valence quarks of the initial state). This implies a significant enhancement of the production of strange mesons and baryons with respect to p–p collisions. This is indeed observed for K and ( mesons, as well as for (, ( and even ( hyperons, at a scale which can not be explained by conventional hadronic mechanisms but which is in good agreement with what can be expected from a QGP. The ( (three strange quarks or three strange antiquarks) data are particularly eloquent: their averaged production rate per participant nucleon increases by a factor l6 between proton–lead and lead–lead collisions, the ( and anti 
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 yields being nearly equal.  
Contrary to hidden strangeness (( mesons), hidden charm (J/( mesons) production is observed to be suppressed in relativistic heavy ion collisions. Such suppression had been predicted, the idea being that when a charm-anticharm pair is produced in the QGP the quark and the antiquark separate before having a chance to fuse into a J/( meson, resulting in an enhancement of open charm and a suppression of hidden charm.

Another QGP signal that had been predicted before having been observed is the suppression of the yield of large transverse momentum hadrons. A close encounter between partons, quarks and/or gluons, results in a hard collision with large transverse momentum secondaries in the final state as was described in the previous paragraph. Such interactions have been extensively studied in proton–proton and proton–antiproton collisions and are perfectly accounted for by perturbative QCD. They are known to produce a pair of hadron jets having opposite transverse momenta and, conversely, any high transverse momentum secondary is a member of a jet of hadrons sharing a same parton parent. In the QGP the situation is quite different, the hard scattered partons suffer important energy losses before having a chance to escape the hot fireball and the yield of large transverse momentum secondaries is accordingly suppressed. Only large transverse momentum partons produced on the outer shell of the fireball have a chance to escape and their partners are strongly slowed down while traversing the opaque fireball. This picture, referred to as "jet quenching", is well corroborated by the RHIC data. 

Glueballs and hybrids
A very interesting prediction of lattice calculations is the existence of gluon bound states. In particular the lightest such “glueball” was predicted to be a bound state of two gluons (of course of opposite colors) having a mass in the 1500 MeV range, a width in the 100 MeV range and zero spin. Moreover it should decay rather democratically in various quark flavors, its gluon constituents being of course unflavored. A requirement for a resonance to be identified as such a glueball is that it should not fit in any quark-antiquark multiplet. A clear candidate was found in the (( channel of the (((o final states of low energy proton–antiproton collisions, with a mass and a width of 1500 ( 10 MeV and respectively 112 ( 10 MeV. It has spin 0 and its decay modes are reasonably consistent with what can be expected for a glueball. It is called f0 (1500) and is usually accepted as being the glueball ground state. However the search for such exotic states is a difficult exercise. At high excitations the density of regular (quark-antiquark) states is high and their widths are large. Indeed several meson resonances have been found that are not clearly identified as belonging to regular multiplets and it will take time to put some order in their classification. It is usually argued that some of these states are “hybrid” states, meaning that they contain valence quarks and antiquarks as well as some admixture of valence gluons. The spectroscopy of such states is very difficult experimentally and accurate theoretical predictions are still out of reach. 
Recently, evidence has been provided for the existence of a new kind of baryons improperly named pentaquarks. In fact they are made of four quarks and an antiquark. 
Among the most convincing candidates are the (+ (1540 GeV, uudd
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), the (– – (1862 GeV, ddss
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) and the (0 (1862 GeV, duss
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). They would all be members of a same decuplet built around the ground state ½+ octet. A possible charmed (0c (3099 GeV, uudd
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) has also be mentioned.

LECTURE 7
THE ELECTROWEAK INTERACTION

Introduction

For many years, the only known manifestation of the weak interaction was ( decay. It was soon realized that it was of the form n ( pe( where the neutrino ( was indeed postulated by Pauli to explain the missing energy observed in ( decay spectra. It took some time before one was able to confirm the existence of neutrinos by making them interact in reactions such as (N ( N’e (using the neutrino flux from a nuclear reactor), and (N ( N’( (using a secondary neutrino beam from an accelerator) providing evidence at the same time for the existence of two kinds of neutrinos. Today, we know that each of the three charged leptons has its associated neutrino and that the general form of the interaction is (((’ where ( and (’ are any of the fermion doublets (u,d), (c,s), (t,b), (e,(e), ((,((), or ((,((). It is then tempting to describe the weak interaction, in analogy with QED and QCD, as a gauge symmetry having SU(2) as gauge group and three weak massless vector bosons as mediators. While the general idea is indeed the right one, it meets many obstacles in this naïve formulation: 
1) It does not account for the fact that parity is maximally violated in ( decays, (Wu, Yang and Lee, 1956),

2) It does not account for the fact that the s and b quarks are in fact unstable and decay to quarks of the lighter family, 
3) It implies the existence of a neutral gauge boson as SU(2) has three generators, namely it implies the existence of another type of weak interaction than ( decays,  
4) It predicts massless vector bosons while in fact the weak bosons are very massive objects, 80 to 90 GeV/c2.

All these obstacles need to be overcome before being satisfied with the theory. The way will be long but very rewarding at the end.

Beta decays and charged currents
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Many different examples of ( decays have been observed. Some couple a quark doublet to a lepton doublet, as is the case for nuclear ( decay (ud( e(), and for many other hadron decays (D(Ke( meaning cs( e( or (+( (oe(, meaning ud( e(), and also hadronic ( decays (such as (((((   meaning ((( (ud, the other leptons are too light to have hadronic decays). Some couple two lepton doublets together, as muon decay ((( e(e((  ), or the leptonic ( decays,   (( ( (((( and 
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(( e(e(( . Some couple two quark doublets, as D+(cd)((+(ud)Ko(sd), meaning cs( ud. All are observed to have the [image: image725.wmf]g

common feature of violating maximally parity. Taking ( decay as an example this implies that the massless neutrinos (we know now that they are not quite massless, we shall come back to this later, but for the time being we can neglect their tiny masses) are left-handed (remember our discussion of the Dirac equation and of Weyl spinors, the parity operator ( exchanges left-handed and right-handed components and operators (1((5 )/2 project on states of a given handedness). Neglecting all final state masses, we have a left-handed electron, a right-handed electron antineutrino and a left-handed muon neutrino in the final state. In the muon rest frame, writing the electron energy as xM(/2, x varies from 0 to 1. Taking the x axis along the muon spin, the case x=1 implies that the electron flies in one direction and the two neutrinos in the opposite direction with their helicities adding to zero. This implies a rate proportional to 
1–cos( where (  is the angle between the muon spin and the electron momentum (i.e. spin), but nothing else is required as the neutrino spins add up to zero and the neutrinos may share as they wish the available energy M( /2. In the x = 0 case, the two neutrinos fly back to back and they have no freedom any longer to adjust their individual momenta: there is much less phase-space available. Moreover, as their helicities add now to 1, they must be parallel to the muon spin while the electron spin must be antiparallel to the muon spin. An exact calculation gives a decay rate proportional to M( x2(3–2x+(1–2x)cos(), reducing indeed to M(5(1–cos() when x=1. All these features are very accurately verified experimentally, implying that the current we shall wish to couple the weak bosons to will not be the Dirac current j(= 
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((( as was the case in QED and QCD, but the current, j(= 1/2
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(( (1–(5)(, where the projector l/2(1–(5) restricts the weak interaction to left-handed fermions and right-handed antifermions. We shall talk of SU(2)L to indicate this. All weak interactions of the ( decay type that have been mentioned above have this property of maximal parity violation. To give just one additional classical example, let us compare the two leptonic charged pion decay modes, ((e(e and (((((. As the only difference between the [image: image726.wmf]-
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two is the different masses of the final state charged leptons, one would expect the rate of the first to be larger than the rate of the second because of the much larger available phase-space, (M(=140MeV, M(=l06MeV, Me=0.5MeV). In fact the contrary is observed, the rate of the first is much smaller than the rate of the second, by a factor 10–4. The reason is maximal parity violation: the pion has spin zero and in the pion rest frame, if the leptons were all massless, the two final state leptons would fly back to back with their spins adding up to unity, one being left-handed and the other right-handed. This is clearly impossible and these decays should be forbidden. However the final state charged leptons are not massless and the fraction of wrong sign helicities is approximately proportional to the square of their masses. Hence a ratio of the order of Me2/M(2 between the two decay rates. An exact calculation gives the experimentally observed ratio very accurately. Note that this explains why the pion ( decay rate is much smaller than that of hyperons. 

Let us now compare the decay rates of the ( and ( leptons into 
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respectively. The ( lifetime is 2.9 10–13 s and the branching ratio is l7.8% giving a decay rate of 0.614 1012 s–1. The ( lifetime is 2.2 10–6s and the branching ratio 100% giving a decay rate of 0.455 106 s–1. The ratio between the two is 1.35 106 exactly equal to the ratio of the kinematic factors in the expression given above, (M( /M( )5 = (1777/105.66)5= 1.35 106. This can be taken as a nice verification that the weak interaction is family independent, or it can be taken as a surprise to see no propagator effect in spite of the large mass ratio (a factor of 18!). If the weak bosons were massless, it should have made a big difference. But we know that the W mass is 80.4 GeV and we therefore expect negligible propagator effects, of order {M( /MW }2=(106/80400)2=1.74 10–6. 
Indeed, to hope for propagator effects to be visible, one has to turn the ( decay diagram by 900 and look for neutrino interactions where the deep inelastic cross-section contains a factor (1+Q2 /MW 2)–2, meaning that to see a 10% effect one needs momentum transfers Q of the order or 18 GeV/c. Neutrino physics has been indeed a major element of progress in our understanding of the weak interaction. Not only has it given very accurate information on the ( decay process [image: image727.wmf]-
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(in the case of neutrino interactions one talks of charged currents) but it has also been the place where neutral currents have been revealed for the first time. In addition to deep-inelastic neutrino scattering on quarks and antiquarks, neutrino electron scattering has also been observed. Neutrino beams are obtained from the decay products of pions and kaons produced in the interaction of a very intense primary proton beam with a thick target. Free space is fit out behind the target to allow for a sufficient decay length, followed by a very thick absorber (usually hundreds of meters of earth, as these beams are built underground). Behind the target some focalisation of the secondaries is possible together with some selection of the sign of the charge, of the momentum, of the K/( ratio. As a result one can obtain beams enriched in one or the other neutrino or antineutrino family and having not too broad an energy spectrum. The very low cross-sections (the total neutrino cross-section increases in proportion to incident neutrino energy and reaches only 1 pbarn, namely l0–36cm2, at 100GeV) imply the use of very large detectors weighing several hundred tons.

The main lesson to be retained from beta decays and charged current neutrino interactions is the universality of the interaction, its independence on quark and lepton families and its V–A structure (meaning 
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(( (1–(5)(, 
[image: image561.wmf]Y

((( being a vector and 
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(((5( being an axial-vector), implying maximal parity violation. In practice, when defining a weak isospin SU(2) symmetry, we shall say that each fermion exists as a left-handed doublet and a right handed singlet. In the approximation where all fermion masses are neglected, it is arbitrary to say that the right handed singlet and the left handed doublet are a same particle. One might say that the electron right and the (positron-antineutrino) right doublet make a particle, the positron left and the (electron-neutrino) left doublet being its antiparticle. This remark may sound stupid when one thinks that the top mass is 170 GeV, but this is negligibly small in comparison with scales such as the Planck mass or the grand unification scale. Indeed, modern ideas about the origin of masses describe them as radiative corrections to originally massless particles and the above remark becomes very meaningful. 

Fermion mixing and CP violation 

We noted earlier that the s and b quarks, that are the lighter members of their respective families, are not stable but decay into quarks of the preceding family. The simplest case is K((e(, meaning s(d. This seems to contradict (and indeed it does!) what we said in the preceding paragraph. However it is fully and accurately accounted for (as well as justified and understood as we shall see at the end of the present chapter) by simply saying that the quark isospin doublets that we should have introduced are not (u,d), (c,s) and (t,b) but (u,d'), (c,s') and (t,b') with d’, s’ and b' obtained from d, s and b via a unitary transformation (note that it is ar​bitrary to have chosen to transform the charge –1/3 quarks, we might as well have kept them and transformed instead the charge 2/3 quarks). The 3(3 unitary matrix V that couples the q2/3 quarks to the q–1/3 quarks depends on 18–9=9 parameters minus 5 quark phases that can be arbitrarily fixed (one relative phase needs to be kept), meaning 4 parameters. It is called the Cabibbo-Kobayashi-Maskawa matrix and is overconstrained by the very numerous weak processes that mix the families together. A convenient parametrization (Wolfenstein) is in terms of the three sub-matrices Vij, defined as coupling families i and j. 
Then, V=1+( V12 + A(2V23 + A(3 V13 and the Vij take very simple forms:
V12=|s><u|–|d><c|,   V23=|b><c|–|s><t|,   V13=(*|b><u|+(1–()|d><t|.

The four parameters are ((0.22, the so-called Cabibbo angle, A(1.0 and the complex number (. If there had been only two families, the only parameter would have been the Cabibbo angle. But with three families the presence of a complex number coupling the first and third families has a very important consequence: it generates CP violation effects as we now briefly explain. 

The K0 and 
[image: image563.wmf]0

K

 mesons have quark contents 
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respectively. 
Transitions between the two are possible via the diagrams above (called box-diagrams): the transition amplitude is dominated by |Vsu*Vdu|2 ~ (2 and the CP-violating term by Im(Vst*Vtd Vsu*Vdu ) , of order A2(6Im(().
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Now CP (charge conjugation(parity) acting on these pseudoscalar meson states gives CP|K0>= –|
[image: image566.wmf]0

K

>, and CP|
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>= –|K0>, namely the CP eigenstates are |K1>=(1/2(|K0>+|
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>) and  |K2>=(1/2(|K0>–|
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To the extent that CP is conserved in the decay process, K1 and K2 have very different decay modes (for example K1(2( while K2(3() and therefore different lifetimes (8.934 l0–11 and 5.17 l0–8s). They also have different masses as a result of the V-induced transitions between K0 and
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. When the mass matrix is diagonalized a mass difference (m=m2–m1=0.53 10–8 
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 s–1 appears, of order (2. Of course when a K0 is produced in a strong interaction such as p(–(((, CP is globally conserved because a ( has been produced in association. But the kaon produced as a K0 or
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K

 is not a CP eigenstate and is expected to decay as a K1 or K2. An interesting consequence of the large difference between the K1 and K2 lifetimes is that far from the production target only K2’s survive. Making them interact in a second target, because of the different interaction cross-sections of K0 and
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, a K1 component is regenerated. But in vacuum, where there is no regeneration, a pure K1 state remains a pure K1 state, a pure K2 state remains a pure K2 state, each evolves with time as exp(–iMi t) with Mi=mi–1/2i(i , mi and (i being the rest mass and respectively the width of the K meson. All this is true if CP is conserved but if CP is violated, transitions being induced between K1 and K2, K1 and K2 are no longer eigenstates of the mass matrix. In this case, the eigenstates become KS= K1 +(K2 and KL= K2 +(K1 where the subscripts S and L stand for “short” and “long” lifetime respectively. As V can induce transitions between K1 and K2 , CP is indeed violated

<K1 |V|K2>=1/2(<K0 |V|
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|V| K0>)=Im(<
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|V|K0>)(A2(6Im(().
The amount of CP violation is measured from the ratio between the decay amplitudes of KL(2( and KS(2( to be (=2.3 10–3. As it is equal to 
(1/2<K1 |V|K2>/(m, it is of order A2(4Im(() and as A is of order unity and (=0.22, (4=2.3 10–3 we get Im(() of order unity. The very small amount of CP violation observed in K0 decays is not the result of a small imaginary part of the Vtd matrix element (or Vbu , they are equal) but of the (4 factor. 

When going from the neutral kaons to neutral B mesons, the box diagram is now different and one finds ( of order unity in the B0d (=b
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) case and of order (2 in the B0s (=b
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) case. The large CP violation effects present in this sector have triggered a large interest in their study with two so-called “beauty factories” having been built for this very purpose (one at Stanford and one in Japan).
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The figure on the right illustrates the so-called unitarity triangle drawn in the complex plane, the upper summit corresponding to (. The contributions of various measurements are indicated. The figure on the left shows the current status of the knowledge of the CKM matrix. The unitarity triangle is shown as a bold line and the small ellipse around its upper summit indicates the constraints currently imposed on  (  by the experiments.
Exercise: calculate the time dependence of the 2( decay rate of a beam made of pure K0 at production time and evolving in vacuum. 

Finally, before leaving the subject of CP violation, let us remember that it is the mechanism proposed to explain why some matter remained after the gigantic matter-antimatter annihilation that followed the big bang, as wittnessed by the very many photons that pervade the universe. 

For a long time we thought that neutrinos were massless, in which case the mixing mechanism that was just described to be at work in the quark sector would have been absent from the lepton sector. But we know now that neutrinos are massive and nearly all what was said for quarks can now be repeated for leptons. In particular there is a mixing matrix equivalent to the CKM matrix and a mass matrix with non-zero mass differences between the three neutrino families. As neutrinos are stable, the ( widths are zero and neutrinos oscillate from one family into another and back without decaying. This is indeed the evidence we have for massive neutrinos: the disappearance of solar neutrinos and the different flux ratios (e/(( between upward and downward going atmospheric neutrinos. 
Solar neutrinos are electron neutrinos from pp(De+(e and we understand reasonably well how the sun works, in particular we are able to accurately and reliably calculate the flux of neutrinos that should reach the earth if they were massless; but the flux measured on earth is about half the value expected; the defect is blamed on oscillations of electron neutrinos into muon neutrinos and is used to evaluate a (( mass in the 10 meV region. 
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Atmospheric neutrinos result from the decays of pions and kaons produced in the collisions of cosmic rays (protons and nuclei) with the earth atmosphere. They contain both electron and muon neutrinos (but more of the latter) and have low enough energies to traverse the earth without interacting significantly: one can detect both downward flying neutrinos from above and upward flying neutrinos from the antipodes. Here again the deviation from expectation is blamed on oscillations between muon and tau neutrinos and is used to evaluate a (( mass in the 50 meV region. The figure shows the present experimental situation: the ellipses indicate the constraints imposed on the neutrino masses and mixing parameters. In fact it is the differences between the masses of the members of an oscillating pair that are constrained; but we have good reasons (see-saw mechanism) to believe that neutrino masses are subject to a hierarchy similar to that which governs the masses of charged leptons; in such a case, the mass difference is nearly equal to the mass of the most massive member of the pair: the upper ellipse corresponds approximately to the τ neutrino and the lower one to the μ neutrino. 
Neutral currents and the Weinberg angle

It is now time to address the question of neutral currents. We shall still ignore the problem of the weak gauge bosons being massive: we shall face it in the next (and last) paragraph of this chapter.  
Requiring gauge invariance under SU(2)L will generate three gauge bosons forming an iso-triplet, W–, W0 and W+. While W– and W+ will describe charged currents (( decays), W0 will describe an interaction very similar to the electromagnetic interaction, except for its restriction to left-handed fermions and for its ignoring electric charge; in particular it will couple to neutrinos and one speaks of neutral currents. Searching for neutral currents has been a challenging activity for many years, in particular searching for K0 ((+(– decavs (exercise: look for a possible diagram that can describe this process and comment on the smallness of the transition amplitude). In many channels the weak neutral current competes with the electromagnetic interaction and, if one is in a mass range well 
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below the Z mass, it will be completely hidden by it and extremely difficult to reveal. The obvious place where to look is in neutrino interactions where there is no competition with electromagnetism. Or one needs to go to mass ranges where the Z dominates over the photon, as was done in the e+e– collider LEP. For the moment let us be satisfied by stating that neutral currents were finally seen at CERN in 1973 in a propane bubble chamber called Gargamelle. The outstanding difficulty of this observation must be underlined: in a neutral current interaction neither the incoming neutrino nor the outgoing neutrino are visible, all that can be seen is the small low energy track(s) left by the interaction of the neutrino with a nucleon or an electron; this contrasts with the nice charged current signature of a high energy lepton suddenly popping up. The competition between the weak neutral current and electromagnetism implies that, whenever possible, the two diagrams where a photon and a W0 are exchanged will interfere. Because of this similarity, or rather say analogy, between the weak and electromagnetic neutral currents, let us attempt to describe both interactions together. Then we should take as a gauge group SU(2)L(U(1), the first group for the weak interaction and the second for QED. But it will not work because the electric charge, Q, does not commute with the generators of the first group, the three components 1/2(i of the weak isospin of left-handed fermions. Indeed Q= –1/2+ 1/2(3 for left-handed leptons, and 1/6+1/2(3 for left-handed quarks. We must take as generator  
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Y=Q–1/2(3 to have it commute with the three components of (. This expression is also valid for right-handed leptons that have (=0. The new quantity Y is called hypercharge. Now, when we take SU(2)L(U(1)Y as gauge group we generate four gauge bosons, the three weak bosons W–,W0 and W+ and the hypercharge boson B. 
In order to recover the photon and the Z, we rotate W0 and B by an angle (W (note that the Z is not the W0, its mass differs from that of the charged W’s):
B   = ( cos(W –Z sin(W              W0 = ( sin(W + Z cos(W
The B and W0 couplings, with respective coupling constants g' and g read:

g’{<(L|(((Q–1/2(3)|(L>+<(R|((Q|(R>}B and g<(L|((1/2(3)|(L> W0 
respectively, giving for the (  and Z couplings:

{<(L|(((g’ cos(W (Q –1/2(3)+g sin(W 1/2(3| (L>+<(R|(( g’cos(W Q|(R>}(
{<(L|(((–g’ sin(W (Q –1/2(3)+g cos(W 1/2(3| (L>–<(R|(( g’sin(W  Q|(R>}Z
Imposing the photon coupling to be the QED term gives:

eQ=g’cos(W (Q –1/2(3)+ g sin(W 1/2(3
namely g’cos(W = gsin(W =e.

We are left with only two free parameters, (W, the so-called Weinberg angle (or sometimes weak angle) and the QED coupling constant, e. The coupling constants of the gauge groups are then g '= e/cos(W and g=e/sin(W. 

The ( and Z couplings are     e <
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> by construction and

e {<(L|(( {– tan(W (Q–1/2(3) + cot(W 1/2(3}| (L> – <(R|((  tan(W  Q|(R>}Z

= e {(tan(W + cot(W) <(L|((1/2(3| (L> –  tan(W <
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The Z is therefore found to couple to a current j(3– sin2(W j(em, where j(em=<
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|((Q|(> and j(3=<(L|((1/2(3|(L>, with a coupling constant 2e/sin2(W.
Today, very numerous and accurate measurements have confirmed the validity of this unified description of the weak and electromagnetic interactions and the Weinberg angle has been measured with high precision, 
sin2(W  = 0.23149 ( 0.00017 from many different processes. Remember that e is measured (Josephson effects) to be equal to 1 .60217733 + 0.000 000 49 10–19 C.
Historically, the observations of neutral currents that followed the Gargamelle discovery were low energy measurements including (see the 1983 situation in the figure below):

a) Measurements of the cross-section ratios ((( N((( X)/ ((( N((X) where N is an isoscalar target nucleus, X stands for anything and the ratio being measured both for incident neutrinos and for incident antineutrinos.

b) The observation of neutrino scattering from electrons using muon neutrinos and antineutrinos from an accelerator beam and using electron antineutrinos from a reactor. The ratio of the (( e((( e cross-sections measured with neutrinos and antineutrinos gives a direct measure of sin2(W.
c) Experiments looking for peculiar atomic transitions where neutral currents effects are at the limit of being detectable (in particular a Cs experiment had some success). 
d) A measurement of the elastic scattering of polarized electrons from deuterium, where the electroweak interference was revealed as a left-right asymmetry of the scattered electrons. 
e) An extensive study of the production of fermion pairs in e+e– collisions at the then maximum available energy, (20GeV per beam.

It is left to the reader as an exercise to comment each of these individual processes.
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In 1982/1983 the weak bosons were produced at CERN for the first time in proton-antiproton collisions and their decay modes could be directly studied. This was the beginning of an era of intensive studies of the weak interaction that culminated with LEP, an e+e– collider that had sufficient energy to produce the Z and even W pairs. 
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Millions of events were studied in different channels allowing for very accurate tests of the electroweak theory. It was even possible, at a time when the top quark had not yet been discovered (from proton-antiproton collisions) to predict correctly its mass from the higher order correction terms (radiative corrections) to electroweak processes that were measured very accurately. The same approach has allowed for constraining the Higgs boson mass to within a 100 to 200 GeV window.  
The figure shows the cross-section as a function of energy with new channels opening at each threshold, usually accompanied by a resonance in the associated quark-antiquark channel. The Z peak and the opening of the W+W– channel are clearly visible.

Among the most important LEP results, one may select:

a) From the width of the Z, a limit of 3 on the number of fermion families having a neutrino lighter than 45 GeV (for the decay Z((( to be kinematically possible).

b) Accurate measurements of the decay widths and asymmetries (the Z being produced with its polarization directed along the beam) of the Z into the various possible channels.

c) Measurement of the W+W– production cross-section. Two diagrams contribute to this process to leading order that interfere destructively, making this measurement a sensitive test of the validity of the electroweak theory.

d) Various strong interaction results obtained from the study of hadron jets of different flavours, in particular b-b pairs.

e) Accurate measurements of lepton pair productions, including a rich harvest of data on ( pairs.
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f) The placing of very many constraining lower limits on the masses of new particles such as supersymmetric partners of the known fermions and gauge bosons and, of course, the Higgs boson(s). Such limits are obtained either directly (non-observation of the particle one is searching for – the production cross-section of which one is able to calculate as a function of its mass) or indirectly (radiative corrections to accurately measured processes).

This list is far from being exhaustive. Some of its items are illustrated here and it is left to the reader to comment them.
Spontaneous symmetry breaking: weak boson masses and the Higgs boson

We still need to find a solution to the problem of the weak boson masses. In general, understanding the mechanism that generates masses, not only to the weak bosons but also to all fermions, is probably the most burning challenge of present day particle physics. Current views on this question are closely linked to the idea of spontaneous symmetry breaking. We devote a few lines to its introduction before tackling the specific problem of the weak boson masses. 
Let us consider a scalar particle with states |(>. The mass term is m2<(|(> and the kinetic term is <(|((((|(> or equivalently<(((|(((>. Taking ( complex is like taking two scalar particles with a same mass m. Introduce an interaction in the form of a potential U taken to be a function of (2 = <(|(>, say U = (2((2–(2). 
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We have now an infinite number of ground states along the circle <(|(> = (2/2.
The global U(1) symmetry of the system (the kinetic term, the mass term and the potential being invariant when we change ( into ei(() is responsible for the degeneracy of the ground state and becomes broken when a particular ground state is chosen, one talks of spontaneously broken symmetry. There are many examples of this in nature; spontaneous breaking is not violation; think for example of the aligned spins in a small magnetic domain of a permanent magnet. Taking ( real in the ground state that has been chosen and redefining the variables around it, (Im((( and Re(((1/2( +()  we find ( 2=( 2+1/2( 2+(2((+( 2 and U = (( 2+( 2((+( 2)2 – (1/2( 2)2 = –1/4( 4+2( 2( 2+ higher order terms. 
Namely ( has a mass (√2 and ( is massless, the higher order terms describing their interactions. This appearance of a massless scalar each time that there is spontaneously symmetry breaking is a very general result, it is called the Goldstone theorem and the massless bosons are called Goldstone bosons. There is one Goldstone boson per degree of freedom that has been frozen by the spontaneous symmetry breaking. 

In order to impose local gauge invariance, all we need to do is to replace the derivatives 
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 by covariant derivatives 
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 (V being the gauge boson of the symmetry group).

The kinetic term reads <
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Φ > – g2VμVμ <Φ| Φ>, with the new added term reading –g2V(V( (( 2+1/2( 2+(2((+( 2), of which the term 1/2g2( 2V(V( is a mass term for the gauge boson (with mass  g( /( 2).

What has happened is that we started with two particles of equal masses, 
Re ( and Im ( , we introduced a potential causing spontaneous symmetry breaking, and we were left with a massive particle, (, and a massless particle, (. Then, we required local gauge invariance under a symmetry having V as gauge boson and ended up with V being massive. This mass generation mechanism is called the Higgs mechanism, and we now apply it to the electroweak interaction. One may say that the degree of freedom of the Goldstone boson has been used to give a longitudinal component to the gauge boson (massless bosons being purely transverse).  
We know apply what has just been sketched to the specific case of the electroweak interaction. We need to make three bosons massive, W+, W– and Z : we need three Goldstone bosons and therefore we  start with four scalars,  (1, (2, (3 and (4 and define (+=(1/2((1+i(2) and (0=(1/2((3+i(4).

We make ( =((+,(0) a doublet under SU(2)L and assign to it an hypercharge Y=1/2 (so we shall keep a neutral boson at the end, with no photon interaction). 
We can now write the covariant derivative, D((=(((–½ig(.W(–ig’YB()( .

We take a potential 
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 and ( 2=( 2/h. The potential minimum is at ( 2=1/2( 2=( 2/2h.  
The potential is invariant under O(4), the rotations in the 4-dimensional space of the (i as they leave (2=1/2
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 invariant. We then choose the axis of (3 along the ground state: we are left with the freedom of rotating (1, (2 and (4 around that axis (invariance under O(3)). We now change variables and develop around the ground state, (3=(, (1=(2=(4=0. Writing (0=(3–(, ( 2=1/2((+(0)2 and 
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Namely the scalar we are left with, (0 , the so-called Higgs boson, has a mass (2(=(((2h) (the mass term reads m2(2, namely 1/2m2((+(0)2 and we must identify (2 with 1/2m2). 
Moreover, it has a triple self-coupling with coupling constant hv= (2/( and a quadruple self-coupling with coupling constant h/4= ( 2/4( 2.

We now write the kinetic term replacing the normal derivatives by covariant derivatives for the isospin doublet |(>={0, ((+(0)/(2} and obtain :

<
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The first term is the Higgs boson kinetic term, the second term includes the mass terms of the gauge bosons and their interactions with the Higgs boson.

Replacing B= ( cos(W –Z sin(W, W0 =  ( sin(W +Z cos(W,

g’ = e/cos(W  and  g =e/sin (W one finds for the second term, writing A±=Ax±iAy:

(g/2)2|{( +W+ + ( –W– – ( sin(W – Z cos(W +tan(W (( cos(W –Z sin(W) } {0,(+(0}|2

= (g/2)2|{( +W+ + ( –W​– – Z /cos(W}(0,(+(0 )|2
giving the following mass terms:

Mz= g ( /2 cos(W  = e( /sin2(W ; Mw= g ( /2 = Mz cos(W ;   M(=0

and the following couplings and coupling constants between the Higgs boson and the gauge bosons: (WW(0)=gMw,  (ZZ(0)=gMz/2cos(W,  (WW(0(0)=g2/4 and (ZZ(0(0)=g2/8cos2(W. The relation Mw=Mz cos(W is measured to be accurately obeyed and (, one of the two independent parameters that have been introduced (out of the three h, v and ( that are related through and (2 = (2/h) is therefore fixed by the measured value of Mz. However the Higgs boson mass, (2(=(((2h) is not constrained by the theory. 

We still need to consider the question of the fermion masses and of the mixing between families. It is now clear how the mechanism of spontaneous symmetry breaking generate masses, it is also at work in the fermion sector through mass terms of the type <fL,f’L|{(3 – i(4,– (1+ i(2 }|fR> and 
<fL,f’L|{(1+i(2, (3+i(4}|fR>.  There is no point in the present lectures to go in the detail of the calculation, it is not the technique that maters here but the main ideas. The point is that we have here terms that couple left-handed isodoublets with right-handed isosinglets, exactly what is required for a mass term, and when we break the symmetry we are left with mass terms (½ ((0+() fLfR and (½ ((0+() f’Lf’R of the required form. The only problem is that we can put whatever coefficient we wish in front, spontaneous symmetry breaking has indeed generated fermion masses but does not place any constraint on these masses. What it did however has been to generate a coupling between the fermions and the Higgs boson with a coupling constant m/v proportional to the fermion masses 
(as k((0+()fLfR = k( fLfR + k(0 fLfR implies m=kv and therefore g=k=m/(). When including several families, all what happens is that starting with terms such as 
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<(fL,f’L)i|{(1+i(2,(3+i(4}|(fR)j> one automatically introduces mixing between the fermions while retaining the fermion masses for the “real” fermions, meaning those that are eigenstates of the mass matrix. 
What have we achieved so far? We have a unified theory of the weak and electromagnetic interactions that depends on only two parameters that have been measured with excellent precisions, say e and sin2(W, if we ignore particle masses and mixings. We have been able to devise a mass generation mechanism that results from spontaneous symmetry breaking and that is successful at giving masses not only to the weak gauge bosons but also to all fermions and to explain their mixings. One difficulty with this theory is that it leaves us with 22 (=2+12+8) parameters that are unconstrained by the theory: two of the three Higgs parameters that we have introduced, we can take for example the W mass and the Higgs mass, twelve fermion masses (6 quarks and 6 leptons) and eight CKM matrix parameters (4 for quarks and 4 for leptons). A second difficulty, to say it kindly, is that until now the Higgs boson has defeated all efforts devoted to its search. It may be timely at this stage to summarize its main properties.

[image: image738.bmp]The Higgs boson is a neutral scalar that couples to the weak gauge bosons, to itself and to the fermions (but not to photons nor to gluons). Its couplings are summarized on next page. The fact that it couples to fermions in proportion to the fermion masses implies a very strong coupling to the top and bottom quarks. We know that its mass exceeds 100 GeV or so and there are strong indirect indications from the study of radiative corrections to electroweak processes that it should be in the 100 to 150 GeV range. The figure shows the situation as it has been settled at LEP: a mass of 200 GeV corresponds to a 2.5 standard deviations disagreement with the data. The production mechanisms that are most likely candidates for its discovery are radiation from a Z (that is how it has been searched for at LEP) or from a W or by fusion of a W pair. There are still some small hopes to see it at the Fermilab proton-antiproton collider but a new proton-proton collider is currently under construction at CERN that should not miss it: the LHC that is expected to start operation in the second half of the decade. A very heavy Higgs boson will become very broad, the ratio of its width to its mass increases quickly and reaches unity around a mass of 1 TeV. It would no longer be seen as a resonance but the weak interaction would become strong in this regime. Finally we must say that more complex schemes allowing for several Higgs bosons are possible (and even likely), we shall see an example in the next chapter. But in such cases the lightest Higgs boson should have a mass that does not exceed the mass of the standard Higgs that has been considered here.
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Electroweak Summary

LECTURE 8

A BRIEF INTRODUCTION TO SUPERSYMMETRY
Physics beyond the Standard Model
The picture that has been drawn in the preceding chapters is undoubtedly an amazing success of modern physics for its accuracy, its beauty, its elegance and its simplicity. Half a century ago noone would have dreamt of such a rapid progress. If we forget about masses, the ideas of group symmetry, of gauge invariance and of space-time symmetry have been sufficient to describe nearly all what we know of the physical world. Yet, we have many reasons to be dissatisfied and to have the conviction that it cannot be the last word. Let us start this chapter by examining some of the features of the standard model that we may find unsatisfactory.

a) Gravitation has been completely ignored in these lectures. It is usually described, following Einstein, in the framework of general relativity where masses are responsible for inducing a curvature of space-time in their neighborhood and where this curvature of space-time is in turn responsible for the dynamics of the moving masses. Indeed, gravitation is absent from the Standard Model. Yet, we know that general relativity and quantum theory are incompatible at the Planck scale (remember, MPlanck=
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 in natural units, GN being Newton gravitational constant), equal to 1.22 1019 GeV/c2.



b) The mass generation mechanism that has been invoked and that relies on spontaneous symmetry breaking has been successful and inspiring but is not fully satisfactory. Not only does it leave us free to set 22 parameters by hand nearly unconstrained, but we have no idea of where it really comes from. How can it manage to generate fermion masses ranging from the meV range to 170 GeV, a span of something like a factor 1014 ! And why is the scale of the symmetry breaking so low compared to the two other mass scales that we have at our disposal, the Planck scale and the grand unification scale (see below)? The Higgs sector parameter 
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 that fixes the spontaneous symmetry breaking scale is only 246 GeV, some 5 1016 times smaller than the Planck mass! This is usually referred to as the hierarchy problem. It is a serious problem because it is very difficult for a scalar like the Higgs not to acquire a large mass (meaning large on the grand unification/Planck scale) from higher order corrections.


c) Why did nature choose the particular three factors entering the group symmetry, U(1), SU(2) and SU(3). One would like to think that they are a low energy approximation of a higher symmetry that would embed them in a single bigger group. Searches for such a “grand unification” have been intensive but have not been rewarded by much success. In particular, one prediction of several grand unification schemes is that the proton should decay much faster than allowed by the experimental constraints placed on the relevant rates (e.g. the rate of 
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 has been measured not to exceed 0.2 10–32 y–1). Also, why do we have color singlets (the leptons) and color triplets (the quarks), why do we have weak isosinglets (the right-handed fermions) and weak isodoublets (the left-handed fermions). There must be some reason behind all this. A hint at the existence of such a grand unification scheme is given by the evolution (the “running”) with the mass scale of the three coupling constants that seem to approach each other at a scale of the order of 1016 GeV. This is clearly illustrated on the figures below, the figure on the right being drawn in the framework of supersymmetry (it will be discussed later, the better convergence is often used as an argument in its favour).
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d) In addition to these three major arguments in favor of the existence of something beyond the Standard Model, one may quote a few others:

–Why three families? One would seem to be sufficient for a consistent theory.

–Why do we have fermions at all?  with bosons alone it would also seem that we can easily write a consistent theory.

–Why is charge (or hypercharge) quantized? Nothing imposes that in the Standard Model.

–Why did the weak interaction choose massive mediators and the strong interaction prefer confinement in order to achieve short range forces?

Answering these questions is of course the challenge of contemporary particle physics. Several avenues are currently being explored, but one among the concepts that have been developed seems particularly fundamental and promising, it is supersymmetry (one says SUSY for short). SUSY has such a particular status among the new ideas of our present thinking that a short introduction to it must find its place in these lectures. It is a space-time symmetry that nature is as free to use as it is to require invariance under transformations of the Poincaré group. It offers answers, or rather hints to answers to several of the questions listed above. It is an essential ingredient of the superstring theories that are currently being elaborated and are believed by many to be our best bet for a “theory of everything” (this appellation is probably unfortunate, too much arrogance is out of place, remember Lord Kelvin who thought that Maxwell equations were explaining the whole world). Today’s physics students must know at least what SUSY is about. Moreover, it has the very attractive feature of predicting the existence of new particles, the supersymmetric partners of the presently known elementary particles. They should have low enough masses to be discovered at the LHC, hopefully by the end of the present decade, or shortly thereafter.
A sketch of the theory 
SUSY is a symmetry that associates bosons with fermions, more precisely spin J particles with spin J± ½ particles. This is the main reason why it has been unthought of for such a long time. There was even a theorem (Coleman and Mandula) that was wrongly interpreted as stating that all possible space-time symmetries were exhausted by the Poincaré group. To illustrate how it works, let us discuss the case of a doublet containing a scalar and a spinor. This may sound strange since we do not know of any scalar and, if SUSY were realized in nature, the two particles of a same doublet should have a same mass. For example the electron should have a scalar partner with a mass of 0.511 MeV. Such is clearly not the case. This implies that if SUSY is a symmetry that is used by nature, it must be badly broken. How badly? We know of three scales, the Planck scale, 1019 GeV, the grand unification scale, 1016 GeV and the scale of spontaneous symmetry breaking of SU(2)(U(1), 246 GeV. Assume that only the two former scales are relevant and all fermions and gauge bosons are originally massless, meaning that they acquire their mass by spontaneous breaking of some higher symmetry. Then the symmetry breaking scale is of the order of a few 100 GeV, very small indeed compared to the grand unification scale, one cannot say that the symmetries are “badly” broken, a few 100 GeV is just nothing. That is the main idea, the difficulty is then to explain what was referred to earlier as the “hierarchy” problem, namely to find a mechanism that produces a spontaneous symmetry breaking scale that is so much smaller than the main scale, but this problem was already with us, we did not add a new problem. On the contrary we may hope to find a solution to the hierarchy problem if we find a reason for some particles to remain massless in the symmetry breaking process. Then these would be the small mass particles that we can study, at a scale, say << 1 TeV, much lower than the grand unification scale and, hopefully, it will not be too difficult to devise some higher order radiative correction that causes their masses not to be exactly zero. I am not asking the student to swallow all that, simply to understand the general idea and to accept to consider the possibility that the electron has indeed a scalar partner with a mass in the few 100 GeV ball park at most. We can now proceed with an analysis of how such fermion-boson symmetry may work.

Let us first remember what we said about spinors when we discussed Dirac equation. We introduced right-handed and left-handed components, ΨL and ΨR , each being a two-component spinor, and we were able to construct two invariants: the kinetic term, ΨL†(( (i(( – eA( )ΨL +ΨR†( ( (i(( – eA( )ΨR and the mass term, m(ΨL†ΨR +ΨR†ΨL) respectively. Here, 
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. In the last section of Lecture 4 we remarked that, if it were not for the mass term, the left-handed and right-handed fermion species would be decoupled. Therefore, in the world of massless particles that we are now going to consider, we may very well take as a definition that all fermions are left-handed. In which case, all antifermions are right-handed. It is then convenient to rewrite the Lagrangian in terms of left-handed Weyl spinors exclusively, namely to replace ΨR by its expression as a function of its antiparticle χL as was done at the end of Lecture 4 where we found that  χLTCΨL was a scalar and  i( ((( C χL* a left-handed spinor.
  We shall write the scalar (massless) state as Ф (complex) and remember that the mass term and the kinetic term read in that case m2Ф*Ф and (∂μФ*)(∂μФ) respectively. Note that, Ф*Ф being conserved, ∂μ(Ф*Ф)=Ф*∂μФ+(∂μФ*)Ф =0.
We consider a pair made of a scalar boson B and a spin ½ fermion F and seek a transformation 1–iχΞ (χ is an infinitesimal real number) that conserves the total free Lagrangian, L=LB+LF with LB= (∂μФ*)(∂μФ) and LF = Ψ†(( i(( Ψ  . From now on we do not need to write the index L , we shall only deal with left-handed Weyl spinors. We are only interested in the terms of Ξ that mix bosons with fermions, δФ=–iχΞΨ and δΨ=–iχΞФ.

As ΞФ must be a spinor and ΞΨ a scalar, we must take Ξ to be a spinor.   Therefore we can introduce a spinor ξ and write simply  δФ=ξT CΨ. We might also write δΨ=ξФ. However, from the expression of the kinetic term, we see that the boson term contains two derivatives and the fermion term only one. This implies that the dimension of a boson field is that of a fermion field times a length to the power ½. Consequently χ must carry the dimension of a length to the power ½ from the expression of δФ and –½ from the expression for δΨ. This cannot work. A simple way out is to insert a derivative in the expression for δΨ but then we need another 4-vector to make a scalar. Hence δΨ= i( ( (( Ф Cξ *. In these expressions ξ is taken to be an infinitesimal left-handed spinor and we simply write:
δФ= ξT CΨ;          δΨ= i( ( (( Ф Cξ *.

Using this transformation law, we may now calculate the variation of the Lagrangian:

 δLB=(∂μФ*)∂ μ( ξT CΨ)+…

 δLF= ( i( ( (( Ф Cξ *)†( ν i( ν Ψ +…= (i ξT C ( ( (( Ф*)i( ν( νΨ+…

where we have used C= – C† and written … for terms in  ξ *.
As we may add as we wish total derivatives to the Lagrangian density without changing the physics, we may integrate δLB and δLF  by part and retain only the other term:
∂μФ*∂ μΨ=∂μ (Ф*∂ μΨ)–Ф*∂μ∂ μΨ              δLB= – ξTC{Ф*∂μ ∂ μΨ}+….
(( ( (( Ф*)( ν( νΨ=((( Ф*)(( (( ν( νΨ)=(( (Ф*( (( ν( νΨ) – Ф*(( (( ν(( ( νΨ)

δLF= –(i ξT C)i Ф*(( (( ν(( ( νΨ)+…=  ξT C{Ф*(( (( ν(( ( νΨ)}+…
But ( (( ν(( ( ν =( 0( 0 +( k( 0 ( k –( k( k ( 0 –( k( l( k ( l =( 0( 0 –( k ( k  =( μ ( μ  ,

where we have used ( k2=1 and( l( k= –( k ( l  for k≠l. Hence:

δLF= ξT C{Ф*(( ( μΨ)}+…= – δLB.
Therefore we have found a transformation that mixes Ф and Ψ, the scalar and spinor members of a fermion-boson pair, and leaves their total kinetic term, namely their free Lagrangian, invariant. If we restrict our discussion to massless particles, this means that we have found a new possible symmetry of space-time: that is supersymmetry. 
We may write, with obvious notations,
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We may then choose ξ1 and ξ2 as we wish and write the infinitesimal transformation as 1–iχΞ. This is what we had always been doing before. Or we may, as we already mentioned, consider ξ as the infinitesimal variable, but then we need to redefine the rules of the game in order to have δФ= ξT CΨ and δΨ= i( ( (( Ф Cξ *. The second approach is more elegant and invites to a complete rewriting of the algebra of space-time transformations including supersymmetry. Indeed, this is the proper way to formulate the supersymmetry algebra; it is based on grassmannian numbers and requires some learning. But there is no point in spending time on that in the present elementary introduction. 
Since there is a symmetry, we know from Noether theorem that there must be a conserved current. It reads 
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 is a spinorial index, 1 or 2. Indeed, 
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. The term in the first bracket cancels because of Dirac equation. The second term contains only terms where μ=ν otherwise the μν term and the νμ term cancel each other because 
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. Hence, the second term is proportional to 
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that vanishes because of the Klein Gordon equation. 
To this conserved “supercurrent” corresponds an invariant “supercharge”,
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 is a spinorial index, 1 or 2. We give the same name to the creation and annihilation operators that create and annihilate such a supercharge, 
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An essential feature of the theory is the commutation relations of SUSY algebra
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 The commutator is obviously diagonal in F,B and it is proportional to σ μPμ . When expressed in terms of the supercharge generators the commutation relations become anticommutation relations and read:
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These anticommutation relations generalize the usual fermion commutation relations. The last relation implies (taking the z axis along the momentum) 
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. In particular, when acting on vacuum (|0>)  ½
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; this means that the energy density of the vacuum is always positive or zero. And it vanishes only if the vacuum is an eigenstate of Q with eigenvalue zero: Q|0>=Q†|0>=0. In that case (but only in that case), when SUSY is an exact unbroken symmetry, all diagrams that contribute to the energy density of the vacuum must miraculously cancel each other. 
It also implies that in a supersymmetric theory every state of non zero energy has a partner obeying the opposite statistics and having an angular momentum differing by plus or minus half a unit. Indeed, start with a particle of helicity λ (= + or ​–) and moving along the third axis. By acting on this state repeatedly with 
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Now, 
[image: image638.wmf][

]

3

0

2

†

2

,

P

P

Q

Q

-

=

+

= 0 for massless particles, implying that 
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 simply annihilate the state. 
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respectively lower and raise the helicity by ½ but, if applied twice, they give zero since [Qα ,Qβ]+=[Qα†,Qβ†]+=0: the multiplet contains only two states, the antiparticles form another multiplet. This is illustrated in the figure below.
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Note that as the commutator of two supersymmetry transformations involves
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 : the Poincaré group must be extended to include SUSY.

These commutation relations are often summarized by saying that the square of a supersymmetry transformation is a translation in space-time, or that the square of a supersymmetry charge is the energy-momentum. It implies a very strong and deep relation between supersymmetry and the structure of space-time and is kind of a revolution in our understanding of its properties. This feature opens the door to the construction of a theory that embeds general relativity: it is called supergravity (SUGRA). In SUSY as presented above, ξ was independent of the space-time position, we had a global symmetry, 
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ξ = 0. Letting ξ depend on xμ and requiring local gauge invariance opens the door to supergravity.
How does a supersymmetric word look like?
In the preceding paragraph we have sketched how SUSY works but we did not seriously consider supermultiplets other than the (0)
[image: image645.wmf]«

(1/2) doublet (the so called chiral doublet) nor did we consider the case of massive particles. However, most of what was said was general enough for it to apply to other supermultiplets and to non-vanishing masses. The extension to massive states is not trivial and implies some arithmetic (using so-called auxiliary fields), yet it can be made to work and there is no point to discuss it further here. Of course, as long as SUSY is unbroken, the masses of the members of a same supermultiplet are equal, but they do not need to be zero any longer. Concerning other multiplets, they are all doublets, and what was said for the chiral doublet applies to them as well: they are all made of pairs having helicities λ and λ+1/2.

A first remark is that we do not know of any boson-fermion pair that could be considered as forming a supersymmetric doublet. All supersymmetric partners of the particles known to us today are therefore yet to be discovered.

The first doublets are the chiral multiplets. They include the known fermions, quarks and leptons, and their supersymmertric partners, the “scalar quarks and leptons” that are called squarks and sleptons. One talks about the sneutrino, the selectron, the stop, etc…

The second doublets are called the vector supermultiplets, they include the gauge bosons and their Weyl spinor fermionic partners.

A third doublet would include the spin 2 graviton and its spin 3/2 partner, the gravitino. 

What about the scalar Higgs boson and its spin ½ partner, the Higgsino? In order to make a vector particle massive via the Higgs mechanism, we need a vector boson that lives in a vector supermultiplet and a scalar Higgs that lives in a chiral supermultiplet . Combining the two multiplets, particles and antiparticles together, the helicity λ can take any integer or half-integer value between –1 and +1 inclusively. In unbroken SUSY, when the Higgs mechanism takes place, this whole set of states acquire a same mass. They include the massive gauge boson, a massive scalar, and the remaining four fermionic states, gauginos and Higgsinos, mix to form a single massive Dirac fermion.When SUSY gets broken this mass degeneracy is of course lifted. Yet, in order to cope with the difficulty created by the left-right asymmetry of the weak interaction and with the need to give masses to the quarks and leptons, a minimum of two Higgs chiral supermultiplets having opposite hypercharges is now required. The net result is that we end up with five (eight minus three) Higgs bosons: two neutral CP-even states, H0 and h0, two charged CP-even stateds, H+ and H– , and one neutral CP-odd state, A0. Their masses are expected to obey the inequalities:
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is the ratio of the v parameters (vacuum expectation values) of the two Higgs doublets, and is expected to be larger than unity but smaller than the ratio of the masses of the top and bottom quarks.

The last of these relations implies that M (h0) < M (Z) but these are relations evaluated to leading order only; higher order terms have been ignored. When they are taken into proper consideration larger values of M(h0) become possible but the mass of the lighter Higgs boson remains severely constrained to low values, typically less than 150 GeV, at the edge of the possibilities of present accelerators but easily accessible to the future LHC collider. Note that what was just described is the simplest scenario, it is called the MSSM for Minimal Supersymmetric Standard Model. More complicated schemes with a richer Higgs sector are also possible and have been considered.
What about the interactions of the superpartners? Essentially, the gauge couplings are not modified, we may take any gauge diagram and change at any vertex a pair of particles into their superpartners without changing the couplings. Of course, because of the different mass values (see below) the propagators will take different values and the transition and decay amplitudes will be modified accordingly. But the coupling constants are unaffected; we have a perfect parallelism between the QCD tree level diagram qqg and its supersymmetric versions 
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 where the tildes indicate the superpartners. This is schematically illustrated on the diagrams below.
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 The rule that superpartners must appear or disappear in pairs is easily expressed by introducing a new quantum number, called R-parity, such that all known particles are R-even and their superpartners are all R-odd. A consequence of this is that the lightest superpartner (LSP) must be stable: if it would decay it would have at least one R-odd particle among its decay products, therefore one decay product at least as massive as itself, which is forbidden by energy-momentum conservation. The LSP should be neutral, otherwise it should have been found in nuclear matter. Its possible interactions are effectively quite constrained since the final state must contain at least one R-odd particle that is at least as massive as itself and virtual particles in the internal lines are bound to be quite off-mass shell in realistic cases.  The candidates most often considered are the photino and some Higgsino-Zino mixing (one talks of a “neutralino” in that case). This feature is often invoked as an ideal solution to the dark matter puzzle. Another important consequence of the stability of the LSP concerns the signature of interactions producing R-odd particles. At the end of the chain they must somehow cascade down to the LSP that will leave the detector undetected, hence an apparent missing energy in the energy balance (neutrinos do the same but they are often produced in associated with a charged lepton, yet they are a source of background in most supersymmetric particle searches)

The remaining interactions are associated with the Higgs sector and the mechanism of spontaneous symmetry breaking. To sketch very crudely the essential ideas, we may say that:

– One takes it as granted that there must be a grand unification mechanism at a scale of 1016 to 1017 GeV. A larger symmetry prevails above that scale and spontaneous symmetry breaking takes place somewhere in this sector (usually assumed to be in supergravity),

– There is a coupling of the supersymmetry breaking expectation values to the Standard Model supermultiplets, namely there are very massive bosons and/or fermions that couple the high mass sector to the particles of the Standard Model and thus communicate supersymmetry breaking,

– Seen from the large mass sector, we have essentially chiral massless fermions, namely the left-handed particles know nothing about the right-handed particles,

– When the spontaneous symmetry breaking mechanism takes place, in each supermultiplet the R-even particles are protected from acquiring a mass because of the SU(2)×U(1) symmetry. Indeed, if the left-handed and right-handed species are independent, the mass terms that couple the two species must cancel (otherwise we may change the phase of one of the components at will and the mass term is explicitely made to vary, the symmetry is not obeyed). This implies massless R-even fermions,

– The R-odd particles, namely the superpartners of the known fermions, are also protected from acquiring a mass, but this time not because of SU(2)×U(1) symmetry but because of supersymmetry. If supersymmetry were unbroken, the particles of a same supermultiplet should have the same mass, therefore the masses of the R-odd particles are locked to that of their R-even partners, and therefore vanish,

– When considering the higher order radiative correction terms that make the masses no longer vanish, we see therefore two different scales at work: one, the electroweak symmetry breaking scale, say 250 GeV, defines the scale of the R-even particle masses that remain equal for the two species (right and left handed). The other mass scale results from the unlocking of the supermultiplet paired masses; it defines the scale, say 1 TeV, of the masses of the R-odd members of a same species; for example, the selectron right and the selectron left are expected to have different masses (note that when one talks of a left-handed selectron, it is obviously an abuse of language since the selectron is a scalar, what is meant is the superpartner of the left-handed electron).

Today, typical lower limits on the masses of the R-odd particles are as follows: squarks: ~250 GeV; sleptons: ~80 to 90 GeV; gluino: ~190 to 260 GeV depending on assumptions; neutralinos (mixtures of photino, Zino and h0): ~33 GeV for the lightest, ~56 GeV for the next, ~107 GeV for the heaviest; charginos (mixtures of W
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and H
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): ~68 GeV; minimal SUSY Higgs: 78 GeV for H
[image: image655.wmf]±

, 91 GeV for h0 and A0. The mass lower limit for the standard model Higgs H0 (no SUSY) is 113 GeV.

Here ends our brief journey in the SUSY word. Within a few years, we should know whether or not a rich set of new R-odd particles is waiting for us to discover them in the few hundred GeV mass range. If such is the case, SUSY will be accepted as one of the most fundamental building blocks of nature and will give a very strong support to the new theories, essentially superstring theories, which are currently being constructed and which govern what happens at the Planck scale. If no such particle is found, the assumption that supersymmetry plays a role in nature will still remain a good bet, probably in a more subtle way than we can imagine today, but the student of modern physics will undoubtedly never regret to have studied what it is and what it implies.
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APPENDIX

ELEMENTARY BASIC QUANTUM MECHANICS

1. The states of a system are represented by vectors in a Hilbert space  

– namely a vector space constructed on complex numbers and equipped with a complex scalar product – and conversely. A vector u, or ket u, is written |u> and the scalar product of |u> with |v> is written <v|u>. The scalar product obeys the relation <v|u>=<u|v>*, implying that <u|u> is real.  

Each observable is associated with a linear operator acting on kets in this Hilbert space. The mean value of observable a associated with operator A in state |u> is <a>=<u|A|u>/<u|u> (one can easily convince oneself that the notation <v|A|u> is not ambiguous).

One defines A†, the hermitian conjugate or adjoint of A, from <u|A|v>*=<v|A†|u>. As <a> is real <u|A|u>=<u|A|u>* =<u|A†|u> for any |u>: we must have A=A†, A must be hermitian.

2. The commutator of two operators is [A,B]=AB–BA. The commutator of two hermitian operators obeys 
[A,B]† = (AB)†–(BA)† = B†A†–A†B† = BA–AB=–[A,B] 
i[A,B] is hermitian, [A,B] is antihermitian.

3. Defining T an operator transforming state |u> into state |u’>=T|u> and conserving scalar products, we must have <u|u>=<u|T†T|u> for any |u>, namely T†T=1. Multiplying by T on the left and T–1 on the right, TT†=TT–1=1. T must be unitary: TT†=T†T=1. Under such a transformation an observable A transforms as A’= TAT† since <u|A|v>’=<u’|A’|v’>=<u| T†A’T|v> for any |u> and |v>.

A unitary infinitesimal transformation T=1+i(H implies
(1+i(H)(1–i(H†)=1+i((H–H†)=1 namely H=H†: H must be hermitian. Limn→({1+i(H/n)n}=exp(i(H) is therefore unitary. 

Hence (|u>=|u’>–|u>= i(H|u> and (A=A’–A=i([H,A].

4. If the Hilbert space has a finite number of dimensions we may define in it an orthonormal basis, <i|j>=(ij. Then, writing Aij=<i|A|j> we find A†ij=A*ji .  

If the basis is complete, we may write |u>=Σi <i|u> |i>=Σi |i><i|u>, thus defining an operator |i><i| that projects kets on |i>. Indeed, (|i><i|)2=|i><i|i><i|=|i><i|. Operators P that obey P2=P are called projectors. The closure relation reads Σi |i><i|=1.

Similarly A=Σij Aij |i><j| defines operator |i><j| and, using the closure relation, we may write: A=Σij |i><i|A|j><j|=Σij Aij |i><j|.  

If the Hilbert space has an infinite number of dimensions, the same formalism remains valid by replacing Kronecker symbols by Dirac ( functions. This is done explicitly farther down.   

5. Consider an eigenstate |a>, <a|a>=1, of A=A† with eigenvalue a. Then <a>=<a|A|a>=a. Let |a’> be another eigenstate, <a’|a’>=1, <a|A|a’>=a<a|a’>=a’<a|a’>. Hence (a–a’)<a|a’>=0: two eigenstates corresponding to two different eigenvalues are orthogonal. Conversely eigenstates associated with a same eigenvalue are said to be degenerated. Another observable commuting with A will lift the degeneracy. A set of non-degenerated eigenstates can be built this way from a complete set of commuting observables. 

6. Again for A|a>=a|a>, A=A†, <a|a>=1, we have <a>=a. 
<a2> =<a|A2|a>=<a|A†A|a>=a2.  Rms(a)={<a2>–<a>2}1/2=0: The eigenstates  are the states where the observable takes always the same value, namely the corresponding eigenvalue. 
For <u|u>=1 <a>=<u|A|u>= Σi<u|ai>A<ai|u>= Σiai|<u|ai>|2. The probability to measure ai is given by |<u|ai>|2.

In general Rms(a) in state u (<u|u>=1) reads 
Δa={<u|(A–<a>)† (A–<a>)|u>}½= ||(A–<a>)|u>||.

Similarly, in the same state u, Δb= ||(B–<b>)|u>||.  

<u|[A,B]|u>=<u|AB|u>–<u|(BA)†|u>*=<u|AB|u>–<u|AB|u>*=2iIm{<u|AB|u>}

implying |<u|[A,B]|u>| ≤ 2|<u|AB|u>| .

ΔaΔb=||(A–<a>)|u>||.||(B–<b>)|u>|| ≥|<u|(A–<a>)(B–<b>)|u>|   (Schwartz)

Hence ΔaΔb ≥ ½ |<u|[(A–<a>),(B–<b>)]|u>| = ½|<u|[A,B]|u>|

Hence the Heisenberg uncertainty relation: ΔaΔb ≥ ½|<u|[A,B]|u>|.   

Two commuting observables can be measured exactly in eigenstates common to the two. Indeed if [A,B]=0 one can find a set of states |a,b> such that 
A|a,b> =a |a,b> and B|a,b>=b|a,b>.

  
7. Consider A and B that commute and have 2 eigenvalues each, a± and b±. 

(cos(|a+>+sin(|a–>)(cos(|b+>+sin(|b–>=
=cos(cos(|++>+sin(cos(|–+>+cos(sin(|+–>+sin(sin(|––>.

 |+–> ± |–+> implies (=0, (=π/2 (or (= π/2, (=0) and therefore cannot be written in this way: This is called inseparability, a fundamental property of QM, sometimes referred to as the Einstein Podolsky Rosen paradox. It is not a paradox at all. It is only a paradox if you try to express it in non-quantum terms.

 
8. Consider a Hilbert space having an infinite number of dimensions spanned by the eigenstates |x> of an observable X forming by itself a complete set of commuting observables, x being a continuous variable. The closure relation reads (|x>dx<x|=1 and the orthonormality condition reads <x|x’>=((x–x’). 
Then |u>=(<x|u>|x>dx, <x|u> is the wave function of |u> in representation {x}.

9. Let 1–iδ(P (P=P†) be the infinitesimal unitary transformation that translates the system from |x> to |x’>=|x+δ(>. P and X are said to be conjugate. X|x>=x|x>, X|x’>=(x+δ()|x’>, X’|x’>=x|x’>, δX|x’>= –δ(|x’>: 
δX=–δ(=–iδ([P,X] and [P,X]=1/i. Consequently, ΔxΔp≥½.  

For a finite translation, exp(–i(P)|x>=|x+(>=(exp(–i(p)|p>dp<p|x>.

Hence <p’|x+(>=(exp(–i(p)<p’|p>dp<p|x>=exp(–i(p’)<p’|x>; Setting p’=p, x=0 and (=x, <p|x>=<p|0>exp(–ipx) and <x|p>(exp(ipx). The wave function of the eigenstate of an observable in the representation of its conjugate is a  plane wave.

|x>=(|p>dp<p|x>=(exp(–ipx)|p>dp: eigenstates of conjugate variables are Fourier transforms of each other. Moreover (/(x <x|p> = ip<x|p>: in the {x} representation  p=1/i (/(x. Watch that (/(x is not hermitian!

Note that plane waves are not normalisable: 
<p|p>=(exp(–ipx).exp(ipx)dx=(dx=(! Conversely, if you are not careful, <x|x>/i=<x|[P,X]|x>=x<x|P|x>–x<x|P|x>=0 and <x|x>=0! Be careful when dealing with distributions! Beware of infinities!  

10. The above describes the basic formalism of QM but does not tell how to link it to classical mechanics. The so-called principle of least action states that for any system evolving from state a to state b ( an integral S (from a to b) called the action such that it is minimal for the actual motion, (S=0. S is a function of all the variables that define the system. One may write it as an integral over time only (from ta to t​b), S=(Ldt, a relation that defines the Lagrangian L, a function of variables xi and vi=dxi/dt.

The conjugate momentum of xi is pi= (L/(vi and the Euler-Lagrange equations read (L/(xi=dpi/dt. The Hamiltonian is defined as H(pi,xi)=pivi–L(xi,vi). Note that (H/(vi=pi–pi=0 by construction. Hence the Hamilton equations:
 –(H/(xi=dpi/dt={H,pi} and (H/(pi=vi={H,xi}. Here {A,B} is a Poisson bracket, {A,B}=(A/(pi.(B/(xi–(A/(xi.(B/(pi. Note that {pi,xi}=1. The time evolution of a quantity F is governed by dF/dt={F,H}. In a simple system with kinetic energy T and potential energy U, L=T–U and H=T+U. 


The quantization follows closely the above formalism, simply replacing xi by a hermitian operator Xi and pi by another, Pi, such that [Pi,Xi]=–i (paralleling {pi,xi}=1). Then P and X are conjugate in the sense of §9. Namely, in the {x} representation Pi reads –i(/(xi and the time evolution of the system is governed by the Schrödinger equation, H(Pi,Xi)|Ψ(t)>=i(|Ψ(t)>/ (t.


As H is hermitian, exp(iHt) is unitary and transforms |Ψ(t)> in |Φ(t)>=exp(iHt)|Ψ(t)>. One says that it transforms from the Schrödinger picture to the Heisenberg picture. But, from Schrödinger equation, |Ψ(t)>= exp(–iHt) |Ψ(0)>, hence |Φ(t)>= |Ψ(0)> is time independent. The observable F transforms into G=exp(iHt)F exp(–iHt) and dG/dt=i[H,G] , paralleling dF/dt={F,H}.
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