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1. Introduction 

 

The capture of a member of a binary star by a massive star or black 

hole, the other member being ejected, is an important phenomenon in dense 

environments [1] such as the centres of galaxies or of globular clusters. Its 

study implies solving the three-body problem, a notoriously difficult problem 

in Newton’s dynamics. The purpose of this dissertation is to study the 

phenomenon using a simple computer simulation.  

In the following section we describe the main properties of binary stars, 

and in particular of X-ray binaries. A third section gives a brief description of 

the centre of the Milky Way with emphasis on X-ray binaries as revelators of 

a large abundance of stellar black holes. The fourth section is a brief reminder 

about the three-body problem. The fifth section describes the computer 

simulation used in the present code and uses as a test bench the two body case 

where Kepler’s laws apply. The sixth section studies the three body case and 

describes under which conditions capture occurs and which is the associated 

cross section. Conclusions and a short summary are given at the end. 
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2. Binary stars 

2.1. Generalities on binary stars 

A binary star is a star system 

consisting of two stars orbiting around 

their common center of mass. The 

brighter star is called the primary and 

the other is its companion star or 

secondary. Many stars are part of either 

binary star systems or star systems with 

more than two stars, called multiple 

star systems. The term double star may 

be used synonymously with binary star, 

but more generally, a double star may 

be either a binary star or an optical 

double star which consists of two stars 

with no physical connection appearing close together in the sky as seen from 

the Earth. A double star may be determined to be optical if its components 

have sufficiently different proper motions or radial velocities, or if parallax 

measurements reveal its two components to be at sufficiently different 

distances from the Earth. Binary star systems are very important in 

astrophysics because calculations of their orbits allow the masses of their 

component stars to be directly determined, which in turn allows other stellar 

parameters, such as radius and density, to be indirectly estimated. This also 

determines an empirical mass-luminosity relationship (MLR) from which the 

masses of single stars can be estimated. 

Binary stars are often detected optically, in which case they are called 

visual binaries. They may also be detected by indirect techniques, such as 

Figure 1: Hubble image of the 
Sirius binary system, in which 
Sirius B can be clearly 
distinguished (lower left) 



 3 

spectroscopy (spectroscopic binaries) or astrometry (astrometric binaries). If 

a binary star happens to orbit in a plane along our line of sight, its components 

will mutually eclipse and transit each other; these pairs are called eclipsing 

binaries, or, as they are detected by their changes in brightness during 

eclipses and transits, photometric binaries.  

If the orbits of components in binary star systems are close enough they 

can gravitationally distort their mutual outer stellar atmospheres. In some 

cases, these close binary systems can exchange mass, which may bring their 

evolution to stages that single stars cannot attain. Famous examples of 

binaries are Algol (an eclipsing binary), Sirius (of which one member is a 

white dwarf) and Cygnus X-1 (of which one member is a black hole). 

Recently, it was shown that the stellar activity observed in globular clusters, 

notoriously composed of old stars and not expected to show any sign of stellar 

activity, was indeed due to close binary systems inducing a resurrection of 

stellar activity in the cluster. 

It is estimated that approximately 1/3 of the star systems in the Milky 

Way are binary or multiple, with the remaining 2/3 consisting of single stars. 

There is a direct correlation between the period of revolution of a binary star 

and the eccentricity of its orbit, with systems of short period having smaller 

eccentricity. Binary stars may be found with any conceivable separation, from 

pairs orbiting so closely that they are practically in contact with each other, to 

pairs so distantly separated that their connection is indicated only by their 

common proper motion through space.   

 Because a large proportion of stars exist in binary systems, binaries are 

particularly important to our understanding of the processes by which stars 

form. In particular, the period and masses of the binary tell us about the 

amount of angular momentum in the system. Because this is a conserved 
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quantity in physics, binaries give us important clues about the conditions 

under which the stars were formed. 

2.2. Formation of Binaries 

Qualitatively, it is not surprising that a gas cloud, which has originally 

a very complex shape and structure, prefers to contract into two or more 

ultimately spherical stars than in a single one. Quantitatively, however, it 

turns out to be very difficult to describe the condensation process. It is only 

very recently, with the availability of powerful computers and simulation 

codes, that progress has been achieved. The direct fragmentation of 

protostellar gas clouds may occur in early phases of collapse (at cloud 

densities ~103-1010cm-3). But at higher densities, clouds are unable to cool 

efficiently upon contraction. In such cases, direct fission of rapidly rotating 

protostars seems to be a more likely mechanism. 

If protostellar objects are assumed to be self-gravitating, incompressible 

fluids with uniform vorticity, one can show analytically that their allowed 

equilibrium configurations are defined by spheroids or ellipsoids. As they 

contract, conserving angular momentum and mass, their evolution may proceed 

through progressively flatter configurations and, if one follows evolution along 

a more and more distorted ellipsoidal sequence, one finds that eventually other 

configurations, with even higher order surface distortions, become 

energetically favorable. For example, there is a “dumbbell-binary sequence” 

that branches smoothly off the ellipsoid sequence.  

One might imagine, therefore, that binary stars form from the slow 

contraction of a rapidly rotating gas cloud via the dumbbell-binary sequence. 

In reality, however, the picture is not that simple. In particular, it was shown 

recently that realistic fission models must incorporate a significant degree of 

differential rotation. Yet, it seems clear that a wide variety of rapidly rotating, 
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non axi-symmetric systems can be constructed with compressible equations of 

state, giving confidence that fission offers a viable route to binary star 

formation.  

2.3. History 

Since the invention of the telescope, many pairs of double stars have 

been found. Early examples include Mizar and Acrux. Mizar, in the Big 

Dipper (Ursa Major), was observed to be double by Giovanni Battista Riccioli 

in 1650 (and probably earlier by Benedetto Castelli and Galileo). The bright 

southern star Acrux, in the Southern Cross, was discovered to be double by 

Father Fontenay in 1685. 

John Michell was first to suggest that double stars might be physically 

attached to each other when he argued in 1767 that the probability that a 

double star was due to a chance alignment was small. William Herschel began 

observing double stars in 1779 and soon thereafter published catalogs of 

about 700 double stars. By 1803, he had observed changes in the relative 

positions in a number of double stars over the course of 25 years, and 

concluded that they must be binary systems; the first orbit of a binary star, 

however, was not computed until 1827, when Félix Savary computed the orbit 

of ξ Ursae Majoris. Since this time, many more double stars have been 

catalogued and measured. The Washington Double Star Catalog, a database of 

visual double stars compiled by the United States Naval Observatory, 

contains over 100,000 pairs of double stars, including optical doubles as well 

as binary stars. Orbits are known for only a few thousand of these double 

stars. 
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2.4. Classification 

A visual binary star is a 

binary star for which the angular 

separation between the two 

components is great enough to 

permit them to be observed as a 

double star in a telescope. The 

resolving power of the telescope is 

an important factor in the detection 

of visual binaries, and as telescopes 

become larger and more powerful 

an increasing number of visual 

binaries are detected. The brightness of the two stars is also an important 

factor, as brighter stars are harder to separate due to their glare than dimmer 

ones are. 

Sometimes, the only evidence of a binary star comes from the Doppler 

effect on its emitted light. In these cases, the binary consists of a pair of stars 

where the spectral lines in the light from each one shifts first toward the blue, 

then toward the red, as each moves first toward us, and then away from us, 

during its motion about their common center of mass, with the period of their 

common orbit. In these systems, the separation between the stars is usually 

very small, and the orbital velocity very high. Unless the plane of the orbit 

happens to be perpendicular to the line of sight, the orbital velocities have 

components in the line of sight and the observed radial velocity of the system 

varies periodically. Since radial velocity can be measured with a spectrometer 

by observing the Doppler shift of the star spectral lines, the binaries detected 

in this manner are known as spectroscopic binaries. Most of these cannot be 

Figure 2: The two components of 
Albireo, a typical visual binary. 
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resolved as a visual binary, even with telescopes of the highest existing 

resolving power. 

An eclipsing binary star is a binary star in which the orbit plane of the 

two stars lies so nearly in the line of sight of the observer that the components 

undergo mutual eclipses. In the case where the binary is also a spectroscopic 

binary and the parallax of the system is known, the binary is quite valuable 

for stellar analysis. In the last decade, measurement of eclipsing binaries 

fundamental parameters has become possible with 8 meter class telescopes. 

This makes it feasible to use them as standard candles. Recently, they have 

been used to give direct distance estimates to the LMC, SMC, Andromeda 

Galaxy and Triangulum Galaxy. Eclipsing binaries offer a direct method to 

gauge the distance to galaxies to a new improved 5% level of accuracy. 

Eclipsing binaries are variable stars, not because the light of the individual 

components varies but because of the eclipses. The light curve of an eclipsing 

binary is characterized by periods of practically constant light, with periodic 

drops in intensity. If one of the stars is larger than the other, one will be 

obscured by a total eclipse while the other will be obscured by an annular 

eclipse. 

Astronomers have discovered some stars that seemingly orbit around an 

empty space. Astrometric binaries are relatively nearby stars which can be 

seen to wobble around a point in space, with no visible companion. The same 

mathematics used for ordinary binaries can be applied to infer the mass of the 

missing companion. The companion could be very dim, so that it is currently 

undetectable or masked by the glare of its primary; or it could be an object 

that emits little or no electromagnetic radiation, such as a black hole or 

neutron star. If the companion is sufficiently massive to cause an observable 

shift in position of the star, then its presence can be deduced.  
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Another classification is based on the distance of the stars, relative to 

their sizes: Detached binaries are binary stars where each component is 

within its Roche lobe, i.e. the area where the gravitational pull of the star 

itself is larger than that of the other component. The stars have no major 

effect on each other, and essentially evolve separately. Most binaries belong 

to this class. Semidetached binary stars are binary stars where one of the 

components fills the binary star's Roche lobe and the other does not. Gas from 

the surface of the Roche lobe filling component (donor) is transferred to the 

other, accreting star. The mass transfer dominates the evolution of the system. 

In many cases, the inflowing gas forms an accretion disc around the accretor. 

A contact binary is a type of binary star in which both components of the 

binary fill their Roche lobes. The uppermost part of the stellar atmospheres 

forms a common envelope that surrounds both stars. As the friction of the 

envelope brakes the orbital motion, the stars may eventually merge. 

Finally, it is possible for widely separated binaries to lose gravitational 

contact with each other during their lifetime as a result of external 

perturbations such as a. close encounter between two binary systems or 

between a binary and a more massive object (as we shall study below). The 

components, or at least one of them, may then move on to evolve as single 

stars. One then speaks of runaway stars. 

2.5. Strongly interacting binaries  

When a binary system contains a compact object such as a white dwarf, 

neutron star or black hole, gas from the other, donor, star can accrete onto the 

compact object. This releases gravitational potential energy, causing the gas 

to become hotter and emit radiation. Cataclysmic variables, where the 

compact object is a white dwarf, are examples of such systems. In X-ray 

binaries, the compact object can be either a neutron star or a black hole. These 
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binaries are classified as low-mass or high-mass according to the mass of the 

donor star. High-mass X-ray binaries contain a young, early type, high-mass 

donor star which transfers mass by its stellar wind, while low-mass X-ray 

binaries are semidetached binaries in which gas from a late-type donor star 

overflows the Roche lobe and falls towards the neutron star or black hole. 

Probably the best known example of an X-ray binary at present is the high-

mass X-ray binary Cygnus X-1. In Cygnus X-1, the mass of the unseen 

companion is believed to be about nine times that of our Sun and is believed 

to be a black hole. 

As a main sequence star increases in size during its evolution, it may at 

some point exceed its Roche lobe, meaning that some of its matter ventures 

into a region where the gravitational pull of its companion star is larger than 

its own. The result is that matter will transfer from one star to another through 

a process known as Roche Lobe overflow (RLOF), either being absorbed by 

direct impact or through an accretion disc. The mathematical point through 

which this transfer happens is called the first Lagrangian point It is not 

uncommon that the accretion disc is the brightest (and thus sometimes the 

only visible) element of a binary star. 

If a star grows outside of its Roche lobe too fast for all abundant matter 

to be transferred to the other component, it is also possible that matter will 

leave the system through other Lagrange points or as stellar wind, thus being 

effectively lost to both components. Since the evolution of a star is 

determined by its mass, the process influences the evolution of both 

companions, and creates stages that can not be attained by single stars. 

If a white dwarf has a close companion star that overflows its Roche 

lobe, the white dwarf will steadily accrete gases from the star's outer 

atmosphere. These are compacted on the white dwarf's surface by its intense 
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gravity, compressed and heated to very high temperatures as additional 

material is drawn in. The white dwarf consists of degenerate matter, and so is 

largely unresponsive to heat, while the accreted hydrogen is not. Hydrogen 

fusion can occur in a stable manner on the surface through the CNO cycle, 

causing the enormous amount of energy liberated by this process to blow the 

remaining gases away from the white dwarf's surface. The result is an 

extremely bright outburst of light, known as a nova. In extreme cases this 

event can cause the white dwarf to exceed the Chandrasekhar limit and trigger 

a supernova that destroys the entire star.  

2.6. X ray binaries 

Since the late 60's, there have been many scientific satellites whose 

mission has been to detect and investigate the X-ray emission of celestial 

objects. As X-rays cannot propagate through the atmosphere, satellites are 

necessary to detect them. 

Figure 3: The all-sky map generated by Uhuru is shown in galactic coordinates 
(relative to the plane of our Galaxy). Most X-ray sources are on the galactic 
plane. A few selected objects are named. Sources which are not at all 
associated with our Galaxy are marked in green. Galactic sources are in red. 
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One of the first satellites dedicated to the study of X-rays was Uhuru. It 

produced a map of the strongest X-ray sources in the sky. Most of the sources 

were observed to be inside the Milky Way. Their energy output could be as 

high as several 1038 ergs/s. “Normal” stars were sufficiently well known to be 

sure that they could not produce such X-rays. It was necessary to find a 

physical explanation for the presence of these point-like high-energy sources. 

The only possible mechanism for generating the radiation is the gravitational 

acceleration of particles in the gravitational field of compact objects.  

Compact objects are the result of stellar evolution and are made of 

extremely dense matter. There are three kinds of compact objects: white 

dwarfs, neutron stars and black holes. The gravitational fields of these objects 

are enormous. Material falling towards these objects is accelerated to 

relativistic velocities and then stopped in some kind of collision on or close to 

the surface of the compact object. Its energy is then liberated in the form of 

X-rays. Most X-ray sources correspond to binary systems in which the 

compact object is dragging material from its companion. They are called X 

ray binaries. There are many binaries but only a small proportion of these will 

evolve into X-ray binaries.  

Not all galactic X-ray sources are X-ray binaries. A few of them are 

young pulsars and some others are supernova remnants.  

X-ray binaries are classified according to the nature of the companions 

to the compact object (the star from which it is taking material). If its mass is 

smaller (larger) than that of the Sun, they are called Low (High) Mass X-ray 

binaries.  

In Low Mass systems, the companions are small reddish stars or even 

other degenerate stars, as in 4U1820-30, shown in Figure 4. The compact 
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object is much more massive than the companion and distorts its shape, 

stealing matter from it.  

 

In High Mass systems, the companions are large, massive, blue stars 

with masses in the range 10-40 solar masses. Sometimes, the compact object 

in the binary is a neutron star with strong magnetic field (up to 1012 G).  

When the matter that has been gravitationally captured by the neutron star 

(which is a high-temperature plasma, consisting of ionized atoms and free 

electrons) comes close, it is trapped by the magnetic field. From then on, it 

Figure 4: An artist's view of the 
Low Mass X-ray binary 4U 1820-
30. A white dwarf (whose size is 
compared with that of the Earth) 
is being distorted by a neutron 
star and losing matter to it. The 
in-falling matter forms an 
accretion disc around the neutron 
star before being accreted. One 
can also compare the size of the 
objects with that of the Sun (a 
small part of which can be seen at 
the bottom). The neutron star at 
the center of the accretion disc is 
too small to be seen. 

Figure 5: An artist view of the 
unusual High Mass X-ray 
Binary SS443. The supergiant 
star is losing mass to the 
neutron star (or black hole) 
companion, but the accretion 
disc is not stable. Particles are 
being accelerated at enormous 
speeds (up to 1/3 of the speed 
of light) and emitted in two 
jets that can be seen in the 
radio wavelengths. 
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can only move following the magnetic field lines. They take it to the magnetic 

poles of the neutron star. Since all the lines are converging there, the density 

is very large and the particles will be decelerated in a collisionless shock or 

will just crash against the neutron star surface. In both cases, they must 

release their energy in the form of X-rays that will have to make their way out 

the magnetic field in a narrow beam. In the same way as one sees radio pulses 

from an isolated pulsar, one now sees X ray pulses: one speaks of an X ray 

pulsar. High Mass X-ray Binaries (HMXRB) contain large blue stars (spectral 

types O and B) and a neutron star companion (in some occasions a black hole, 

as is the case of Cyg X--1, shown in Figure 6). The large blue stars are very 

bright: when observing the system in infrared, optical or ultraviolet, one sees 

only it. The neutron star can only be seen in the X-ray range. Most HMXRB 

are X-ray pulsars.  

 

When a star reaches the last stages of its life, after having consumed 

most of the hydrogen in its nucleus, the outer layers begin expanding and the 

star grows enormously. It becomes a supergiant. As it grows, the gravitational 

pull on its outer layers decreases. It is then when the gravitational attraction of 

an orbiting compact object in a close orbit can start distorting the shape of the 

supergiant and the dragging of matter towards the compact star begins.  

Figure 6: An artist impression 
of the High Mass X-ray Binary 
Cygnus X-1. The supergiant 
star HD226868 with about 
thirty solar masses, is being 
distorted by the presence of a 
black hole with a mass around 
15 solar masses. There is an 
extremely hot accretion disc 
around the black hole where 
the X-rays are being produced. 
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As the supergiant expands, it increases in brightness. The outer layers 

of its atmosphere are continuously bombarded by very energetic photons. 

They push a stream of particles along with them. These particles dissipate into 

the empty space around the star at very high velocities. This is called a 

radiation-driven stellar wind. Sometimes, a neutron star in a rather distant 

orbit can pick up some of these particles and start the accretion process, 

becoming a weak X-ray source. However, if a neutron star is orbiting a star 

which has not reached the supergiant phase, it will not be able to steal any 

material from it and will not become an X-ray source.  
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3. The centre of the Milky Way 

3.1. Galactic Black holes: general features 

 For now a few years, we have known about the existence of a massive 

black hole (3 million solar masses) at the centre of our galaxy, the Milky 

Way. We briefly present below what we have learned of it. At the same time, 

evidence for the presence of very massive black holes at the centre of other 

nearby galaxies, such as Andromeda, has been obtained. It seems likely, 

today, that all galaxies should have a massive black hole in their centre. 

Indeed, evidence for the presence of very massive black holes at the centre of 

smaller groupings of stars has also been accumulated recently. As an 

example, such a black hole has been identified at the centre of the globular 

cluster ω Cen with a mass of 4±1 104 solar masses. The most massive black 

holes we know of take the form of quasars and their masses may reach several 

billion solar masses. One of the most famous is Cyg A, 200 Mpc away, which 

was discovered first as a very loud radio source. Such supermassive black 

holes are embedded in dense environments and accrete gigantic amounts of 

matter: one talks of active galactic nuclei. In active galactic nuclei, the 

horizon, 3 km/solar mass or better 10 light seconds per million solar masses, 

is surrounded by a very brilliant accretion disk made of high temperature 

plasma. Around it, at much larger distances, one finds a torus of gas and dust, 

or circumnuclear ring. Depending on where one looks from, it may obscure 

the accretion disk. Perpendicular to the accretion disk, namely parallel to the 

magnetic field which it contains, are two relativistic jets of electrons and 

possibly ionized nuclei. Both the jets and the accretion disk are the seat of 

intense synchrotron radiation with wave lengths extending from radio to X-

rays. The more massive the active galactic nucleus the more marked are these 

features.  



 16 

3.2. Sgr A* 

 The emission of radio waves from the centre of the Milky Way was first 

discovered in 1932 by Karl Jansky. It was only in 1974 that a point radio 

source, Sgr A*, was resolved at Greenbank (Figure 7), very high resolution 

images of which are now available from GHz interferometry (Figures 8 and 9).  

Figure 7: The Green bank radio 
telescope 

 

Figure 8: Broad 90cm VLA view of 
the centre of the Milky Way 

Figure 9: Left: Zooming in at 6 cm wave length. Many supernova remnants 
have been identified. Star density is one million times higher than near the Sun. 
Many SN explosions, dense star forming region. A three arm structure is 
revealed in Sgr A 

Right: Highest resolution VLA image, 2ly×2ly. The bright spot is Sgr A*. 
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The Very Large Base Array, which uses an Earth-size base, found that 

Sgr A* is solidly anchored at the centre of the Galaxy, with a very small 

peculiar movement, in agreement with the idea that it grew from accreting 

material from the Galaxy.  

 Sgr A* is not visible at optical wavelengths because the centre of the 

Milky Way is obscured by heavy clouds of dust. But at longer wave lengths, 

the dust becomes transparent: already in the near infrared one starts to see the 

region glowing (Figure 10) and the mid and far infrared reveal stars and allow 

studying their movement.  

Indeed, the most spectacular achievement of infrared observations, made from 

ground using adaptative optics on the Very Large Telescope, was the study of 

the Kepler movement of stars around the black hole, in particular of a star 

having a very eccentric orbit with a period of 15.2 years (Figure 11), which 

measured the mass of the black hole at the level of three million solar masses. 

Figure 10: Large scale views of the centre of the Milky Way in the 
visible (left) and near infrared (right). 
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The region has also been intensively observed in X-rays and γ rays. Putting all 

these observations together has made it possible to draw a detailed picture of 

the centre of the Galaxy and to study Sgr A* in much detail. As shown in 

Figure 12, the point radio source has an X-ray counterpart, and its diameter is 

smaller than 5 light minutes, a limit only 5 times as large as the 

Schwarzschild diameter of the black hole. The infrared counterpart is much 

fainter and was only discovered after having realized that it was occasionally 

flaring, while strong and clear flaring is detected in X-rays (Chandra) and 

accurately measured, confirming the very compact nature of the source. In 

addition, X-ray observations suggest the presence of a jet perpendicular to the 

 

 

 Figure 11: Zooming in (mid-infrared). Stars are observed in infrared as 
orbiting around a 3million solar masses black hole. 
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galactic plane, namely parallel to the Galaxy angular momentum, reinforcing 

the idea that Sgr A* is solidly anchored to the Galaxy.  

All observations provide evidence for a very high star density 

surrounding Sgr A*, typically a million times higher than in the environment 

of the Sun. As a result, intense activity takes place, both in terms of star 

formation and in terms of supernova explosions, as testified by the high 

density of supernova remnants present in the region.  

Independent evidence is obtained from the high population of active X-ray 

binaries [1], twenty times higher than expected (Figure 13). These are black 

Figure12: Top left, CHANDRA, used to observe Sgr A* in X rays; Top right, an 
X ray view of the galactic centre; Bottom, left, superposition of a 2-8 keV 
Chandra picture with Naos Conica VLT mid infrared; Sgr A* source 
<1.4 arcsec in diameter, consistent with expected accretion disc of a 3 million 
solar masses black hole; Bottom right, observation of X ray flares. 
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holes accreting matter from their companion and their abnormal abundance is 

due to a high density of stellar black holes in the region: they interact with 

normal binaries by exchanging partner. It implies that a swarm of ten 

thousand or so stellar black holes are orbiting Sgr A*. It is this observation 

which motivated the present study.  

Many other observations and measurements have revealed the structure 

of the immediate environment of Sgr A*, all consistent with the black hole 

hypothesis. In particular (Figure 14), a ring of gas and dust of 1 to 2 pc radius 

has been shown to surround Sgr A*. It is fed by dense clouds, 10 to 20 pc 

away; three arms of hot gas (>104 K) spiral toward Sgr A*. 

 While none of these observations can be taken as a strict proof that Sgr 

A* is a black hole, it is their accumulation and their convergence that has 

convinced the astrophysics community that such is the case. Indeed, we do 

not know how to devise a crucial test that would unambiguously conclude that 

a celestial object is a black hole: most of its non trivial features occur beyond 

the horizon and are not accessible to us. 

Figure 13: Twenty times as many 
active X ray binaries as expected, 
suggesting that ten thousand stellar 
black holes may be orbiting Sgr A*. 

Figure 14: A ring of dust (6.5ly radius) 
fed by dense clouds 25 to 50 ly away 
and three arms of hot gas (>10000K) 
spiralling toward SgrA*. 
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4. The three-body problem 

4.1. History 

The three-body problem considers three masses M1, M2, and M3, 

interacting mutually via Newton's law  In the restricted three-body problem, 

M3 is taken to be small enough so that it does not influence the motion of M1 

and M2, which are assumed to be in circular orbits about their center of mass. 

The orbits of three masses are further assumed to all lie in a common plane. If 

M1 and M2 are in elliptical instead of circular orbits, the problem is variously 

known as the “elliptic restricted problem” or “pseudorestricted problem”.  

The efforts of many famous mathematicians have been devoted to this 

difficult problem, including Euler and Lagrange (1772), Jacobi (1836), Hill 

(1878), Poincaré (1899), Levi-Civita (1905), and Birkhoff (1915). In 1772, 

Euler first introduced a synodic (rotating) coordinate system. Jacobi (1836) 

subsequently discovered an integral of motion in this coordinate system 

(which he independently introduced) that is now known as the Jacobi integral. 

Hill (1878) used this integral to show that the Earth-Moon distance remains 

bounded from above for all time (assuming his model for the Sun-Earth-

Moon system is valid), and Brown (1896) gave the most precise lunar theory 

of his time.  

Poincaré, in 1899, emphasized qualitative aspects of celestial 

mechanics, including modern concepts such at phase space surfaces of 

section. Birkhoff (1915) further developed these qualitative methods. The 

important problem of regularization was considered by Thiele (1892), 

Painlevé (1897), Levi-Civita (1903), Burrau (1906), Sundman (1912), and 

Birkhoff (1915). Painlevé proved that all singularities are collisions for n = 3. 

Sundman found a uniformly convergent infinite series involving known 

functions that “solves” the restricted three-body problem in the whole plane 
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(once singularities are removed through the process of regularization). Since 

such global regularizations are available for this problem, the restricted 

problem of three bodies can be considered to be complete “solved”. However, 

this “solution” does not address issues of stability, allowed regions of motion, 

and so on, and so is of limited practical utility. Furthermore, an unreasonably 

large number of terms (of order 108’000’000) are required to attain the accuracy 

required for astronomical observations.  

In physics and astronomy, Euler's three-body problem is to solve for 

the motion of a particle that is acted upon by the gravitational field of two 

other point masses that are either fixed in space or move in circular coplanar 

orbits about their center of mass. This problem is significant as an exactly 

soluble special case of the three-body problem, and an approximate solution 

for particles moving in the gravitational fields of prolate and oblate spheroids. 

This problem is named after Leonhard Euler, who discussed it in memoirs 

published in 1760 and showed that it had an exact solution. Joseph Louis 

Lagrange solved a generalized problem in which the centers exert both linear 

and inverse-square forces. Carl Gustav Jacob Jacobi showed that the rotation 

of the particle about the axis of the two fixed centers could be separated out, 

reducing the general three-dimensional problem to the planar problem. 

By treating Euler's problem as a Liouville dynamical system, the exact 

solution can be expressed in terms of elliptic integrals. For convenience, the 

problem may also be solved by numerical methods. 

4.2. Present approach 

 In general, for Nbody bodies in gravitational interaction, one can write 

Newton’s law which gives the acceleration of body i as d2xi/dt2=∑Gmk(rk–

r i)/(rk–ri)
3 where G is Newton’s gravity constant, mi is the mass of body i, r i 

the position vector of body i and t is the time. The sum extends over all bodies 
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(index k) other than i. It is convenient to use units such that G=1, ∑|r i|=1 and 

∑mi=1. Moreover, when describing a binary, it is useful to work in a frame in 

which the binary is initially at rest. Namely, at time 0, ∑mivi = ∑mir i=  0 where 

we introduced velocities vi=dr i/dt and where the sum extends over the two 

members of the binary. Giving them indices 1 and 2, we have therefore at 

time zero r1=m2 and r2=m1. In the case of a binary with circular orbits, the 

centrifugal acceleration balances the acceleration of gravity, namely the 

velocity obeys v1
2/r1=Gm2/(r1+r2)=m2=r 1, that is v1=r 1 and v2=r 2. 

As a general rule, we shall use throughout the units described above 

and work in the frame in which the binary is at rest at the origin of time. The 

initial conditions of the binary are then completely defined by the mass ratio 

of the stars in the binary, which sets their masses and original locations, and 

one of the velocity vectors, the other obeying relation m1v1+m2v2=0. The 

initial parameters defining the third star (location, velocity and mass) can be 

chosen at will. 

The simulation proceeds in small steps of time, ∆t, each time 

calculating for each of the bodies the Newton’s acceleration γ induced on it by 

the other bodies and modifying its position and velocity according to 

v’=v+γ∆t and x’=x+v∆t+½γ∆t2. For increased precision γ is calculated before 

and after the time interval ∆t and the average of the two vectors is used to 

transform v and x.  

In general, two bodies are bound if, in their centre of mass system, the 

total energy, potential plus kinetics, is negative. Otherwise they are unbound. 

In the case of the binary, as all variables are expressed in their centre of mass 

system, the binding condition reads simply E12=½m1v1
2+½m2v2

2+m1m2<0. 

Here EK=½m1v1
2+½m2v2

2 is the kinetic energy and EG=m1m2 is the gravity 

potential energy. In the case of a pair containing the third mass, say masses 1 
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and 3, the centre of mass has a position vector (m1r1+m3r3)/(m1+m3) and a 

velocity (m1v1+m3v3)/(m1+m3). Hence the binding condition reads 

E13=½m1u1
2+½m3u3

2+m1m3<0 where u1=m3(v1−v3) and u3=m1(v3−v1). The 

capture of a member of the binary, say mass 1, by the third mass is 

characterized by E12 changing from negative to positive while E13 changes 

from positive to negative. 
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5. The two body case 

The present section concentrates on the two body case which is well 

known to obey Kepler’s laws with elliptical, parabolic or hyperbolic orbits. It 

is used to validate the method.  

Figures 15 and 16 illustrate the 

case of a binary made of two 

stars of equal masses. In Figure 

15 the initial velocities are taken 

perpendicular to the line joining 

the stars and the trajectories of 

one of the stars are shown for 

various values of the initial 

velocities v. In the particular 

case where v=r  we find circular 

orbits as expected (green 

trajectory). The system is bound 

and the gravitational energy is twice as large as the kinetic energy and 

negative. For smaller velocities, the system remains bound and the trajectories 

are ellipses having their minor axis parallel to the x axis. For larger velocities, 

the system remains bound until they become a factor √2 larger than the 

circular velocity. Then the system gets unbound and the trajectory is a 

parabola (shown in red). For still higher velocities, the system remains 

unbound and the trajectories are hyperbolae.  

In Figure 16, the initial velocities are taken of magnitudes v=r  but the 

angle θ they make with the x axis is varied. For θ=0 the trajectory is circular 

(shown in green). Here, contrary to the preceding case, the initial energy is 

always the same (the kinetic energy depends only on the modulus of the 
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Figure 15: Trajectories of one of the 
stars of a binary for various values of 
the initial velocity (see text). 
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velocity, not on its angle) and the system remains bound. This is illustrated in 

Figure 17 where the total energy, E12 , is shown as a function of v2. The value 

–1/8, corresponding to the circular case (green point) and to the orbits shown 

in Figure 17, is indicated by a black line. The transition from bound to 

unbound (E12=0) occurs at v2/r2=2 (red point). As expected, E12=(v2/r2–2)/8. 

 

When the two masses are 

unequal, the above results 

remain qualitatively the same. 

Figure 18 extends Figure 17 to 

unequal masses. The lines 

shown are for m1=m2, m1=2m2, 

m1=5m2, m1=10m2, m1=100m2. 

Note that for m1=λm2 , as 

m1+m2=1, m1m2=λ/(1+λ)2,         

E12=(½v2/r2–1)λ/(1+λ)2. 

Hence, for a same total mass, an asymmetric binary is less bound than a 

symmetric one and will be easier to tear apart when interacting with a third body.  
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Figure 16: Trajectories of one of the 
stars of a binary for various angles of 
the initial velocity (see text). 

Figure 17: Dependence of the 
binary binding energy on initial 
velocity (see text) 

Figure 18: Dependence of the binary 
binding energy on initial velocity 
for various values of λ (see text) 
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Equal mass binaries with elliptic orbits are considered in Figure 19. 

Here, m1=m2=0.5 and the initial velocities are parallel to the x axis and obey 

v1/v2=r 1/r2, that is v1=λr1 and v2=λr2. Orbits are shown for different values of 

λ and r1=5r2.  

 

Here again the system evolves from a bound state when λ is small to an 

unbound state when λ is large. The values corresponding to a circular (green) 

and parabolic (red) trajectories are λ=1 and √2 respectively. 

Figure 19: Trajectories of one of the stars of a binary for various of v/r (see text). 
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6. The three body case 

6.1. General features 

Here we consider the three body problem in the particular case where 

the initial state consists of a binary, namely a bound pair, and a more massive 

star far away from it, namely such that the three body system is globally 

unbound.. Two main evolutions are possible: either the binary and the 

massive star move away from each other with minimal disturbance to the 

binary or the massive star captures a member of the binary and moves away 

from the other, left alone, member of the binary. As the three body system is 

unbound in the initial state, it must remain so (conservation of energy) and a 

bound final state, with all three stars orbiting together on closed orbits, is 

excluded. However, on the contrary, a final state in which all stars are moving 

away from each other, namely where the action of the massive star has been 

to break the binary without capturing any of its members, is in principle 

possible.   

We start this section by showing in Figures 20 to 22 three examples of 

the above evolution. Detailed descriptions of what is happening are given in 

the figure captions.  

6.2. The capture cross-section: illustration on an example 

 In the present paragraph we study a three-body configuration system 

made of a binary on a circular orbit, the members of which have equal 

masses, and of a massive star moving toward it. The massive star has a mass 

equal to three times the mass of that of each star in the binary and is initially 

located at a distance equal to ten times the radius of the binary orbit. The 

trajectories are illustrated in the reference system in which the binary is 

originally at rest.  
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In Figure 23, we show a situation where the massive star is on the axis 

of the initial binary and moves toward it with a velocity equal to twice the 

initial velocities of the binary members. Note that if the binary where replaced 

by a single star having a mass equal to twice that of its members, the escape 

velocity would be √8/5 ~1.26 the initial velocity of the binary members. The 

system is found to evolve in two distinct phases. In a first phase (upper 

panels) the binary (1-red, 2-green) is strongly perturbed and nearly torn apart. 

It does manage to come back together, however, at the same time as the 

massive star (3-blue) arrives. What happens after this new encounter is that 

most of the momentum of the massive star is now transferred to the binary 

which moves on at high velocity away from the massive star. The orbits are 

now elliptical. The net result of the interaction is therefore a quasi-elastic 

collision between the massive star and the binary with only a small 

perturbation to the binary internal state. The lower panels of Figure 23 display 

the evolution of the kinetic and potential energies of the three-body and 

binary systems respectively. In the three-body case the first and second close 

encounters are seen as strong peaks in both kinetic and potential energies 

(which add up to a constant). In the second phase, the oscillations are 

associated with the binary orbital movement. In the binary case, similar 

features are observed; after the second close encounter, the total energy is less 

negative than it was at the very beginning, meaning that the binary is less 

closely bound in its current elliptical orbit than it was in its initial circular 

orbit.  

The configuration of Figure 23 will now be used to study how it gets 

modified when the massive star starts moving to the binary away from the 

binary axis, either out of the binary plane or inside it. Moreover, the 

modifications induced by a change in the initial velocity of the massive star 

will also be studied. Our aim, in doing so, is to obtain an estimate of the 
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collision cross section, namely the effective interaction area offered by the 

binary to the massive star. What is meant here is that if the massive star points 

outside this area, the binary will remain bound while if it aims inside it will be 

torn apart, possibly resulting in a capture.  

In a first step we study what happens when the initial position of the 

massive star is moved away from the binary axis, parallel to the plane of the 

binary, in steps of y. Up to y~4.8 orbit radii (o.r.), the massive star always 

captures one of the members of the binary. Usually, the capture occurs in a 

single go. However, in transition regions where the captured star switches 

from one to the other, a second (or more) close encounter occurs, reminiscent 

of the axial case of Figure 23. In practice, the red star is captured when 

y<~2/3 or y>~3.9 o.r. while the green star is captured when y lies between 

these two values. Examples are illustrated in Figure 24. The transition 

regions, with multiple encounters associated with alternating captures are very 

chaotic. In real situations of a dense environment, interactions with other 

additional nearby stars would very likely occur and complicate the picture.    

 In order to evaluate the range within which capture or break-up occurs, 

we define a collision cross-section, σc , as σc=πRc
2 where Rc is the collision 

radius defined as the average impact parameter (measured along y from the 

centre of the binary in the present cases) beyond which the binary is not torn 

apart, whether with or without capture. Figure 25 shows the dependence of Rc 

on the velocity V3 of the massive star in three different configurations: 

moving away in y from the binary axis parallel to the binary plane and 

moving away in y from the x axis in the binary plane in each of the positive 

and negative directions. The differences observed between the three 

configurations are the result of the dissymmetry introduced by the movement 

of rotation of the binary. At large values of V3 , the binary radius defines the 
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scale of the problem while at smaller values, there is sufficient time for the 

massive star to attract the binary in its neighborhood and interact with it.  

 In practical cases, we do not expect the initial relative velocity between 

the massive star and the binary to be significantly larger than the velocities of 

the binary members within the binary cms. In such cases, we see that large 

collision radii can be expected, most collisions resulting in capture. This 

implies large capture cross-sections in most practical cases. Figure 26 

displays the dependence of Rc on V3 for three different values of the mass M3 

of the massive star (2, 3 and 4 times the common mass of the binary 

members) and for each of the configurations in which the massive star is 

moved in y in the binary plane away from the x axis. At large values of V3 the 

collision radius is nearly independent on the mass of the massive star, 

confirming that the scale is uniquely defined by the size of the binary. At 

lower values of V3 , on the contrary, the collision radius depends on M3 

approximately as M3
1/3 implying σc~M3

2/3.  
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Figure 20: Example of a capture. 
The trajectories are shown on the top left. All three stars are coplanar and 

remain so. The binary (nr 1, green and nr 2, red) starts from the right. It is made 
of two equal mass stars originally on circular orbits. The massive star (nr 3, 
blue, mass equal to 4 times the mass of the binary members) comes from the 
left and captures the green star, leaving the red star fly away alone.  

The kinetic (red) and potential (green) energies of the three body system 
(bottom left) exactly compensate each other (black), as imposed by energy 
conservation. The total energy is negative. 

The top right panel shows the pair total energies measured in the pair 
centre of mass frames. The energy of the 1-2 pair (red) starts negative (the 
binary being bound) and becomes positive after capture. Strong out of phase 
oscillations are seen before capture on the energy of the 1-3 (green) and 2-3 
(blue) pairs. After capture, the energy of the 2-3 pair becomes negative and that 
of the 1-2 pair becomes positive, as expected. Here again the energies of the 
unbound pairs display strong out of phase oscillations. 

The bottom right panel displays the sharing between potential (green) 
and kinetic (red) energies in the case of the 1-2 pair (in its centre of mass 
system). The total energy is shown in black. After capture, the potential energy 
of the pair quickly cancels (as the stars get far apart) while the kinetic energy 
keeps oscillating, a result of the orbiting of the captured green star around the 
blue star (remember that we are in the green-red cms). 
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Figure 21: A case of no capture. 
 Top left: the trajectories are shown with the same conventions as in Figure 
20. The red-green binary scatters against the massive blue star but the pair is not 
broken. The stars are coplanar and have the same masses as in Figure 20 with the 
binary initially on circular orbits. 
 Bottom left: kinetic and potential energies of the three body system. 
Before scattering, the binary is on circular orbits: its kinetic and potential 
energies are independently constant. After scattering, on the contrary, the binary 
has been perturbed and is on elliptical orbits with oscillations of its respective 
potential and kinetic energies. 
 Top right: the pair total energies in their cms. The binary (red) is more 
strongly bound after scattering than before. The oscillations seen in the unbound 
pairs are the result of the orbiting of the binary (they are measured in the cms of 
the unbound pairs). 
 Bottom right: binary kinetic and potential energies. After scattering, the 
orbits become elliptical, causing an oscillation of the sharing of the total energy 
between potential and kinetic. 
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Figure 22: An example of break up.  
The binary (green-red) is originally on a circular orbit in the x-y plane. The 

massive star (blue, mass equal to three times the mass of each member of the 
binary) comes on a trajectory normal to the binary plane aiming at the centre of 
the binary orbit. The initial velocity of the blue star is 5 times as large as the 
initial velocities of the members of the binary. 

Top left: trajectories in the x-y plane (the blue star is at x=y=0 all the time). 
Top right: trajectories in the y-z plane. 
Bottom left: The total kinetic (red) and potential (green) energies of the 

three body system. The total energy (black) is of course constant and positive. 
Bottom right: The total pair energies (kinetic + potential) for each of the 

three pairs (1-2 red, 1-3 and 2-3 blue) in their cms. When the 1-2 pair is broken its 
total energy switches from negative to positive. 
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Figure 23: This case of a quasi-elastic collision proceeding in two distinct 
phases is described in the text. The upper panels are for the first phase and the 
middle panels for the second phase. The left panels are projections in the x-y 
plane and the right panels in the y-z plane. The lower panels display the sharing 
of energy between kinetic (red) and potential (green) for the 3-body (left) and 
binary (right) in their respective centre of mass systems.  
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Figure 24: Moving away in y from the binary axis; 
Upper panels: Examples of transition regions (y-z views). Left: y=3.76 orbit 
radii. Right: y=0.034 orbit radii.  
Middle panels: Example of a clear capture, y=2 orbit radii. Left: x-y view. 
Right: y-z view. 
Lower panels: No capture, y=4.9 orbit radii. Left: x-y view. Right: y-z view.   
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Figure 25: Dependence of the collision radius, Rc , on the initial velocity, V3 , of 
the massive star in three different configurations: moving away in y from the 
binary axis parallel to the binary plane (green) and moving away in y from the x 
axis in the binary plane in each of the positive (black) and negative (red) 
directions. The differences observed between the three configurations are the 
simple result of the dissymmetry introduced by the movement of rotation of the 
binary. Here, the velocity of the massive star is measured in units of the initial 
velocity of each of the binary members. Initially, the binary has circular orbits 
and its centre of gravity is at rest. The collision radius is measured in units of the 
radius of the initial binary orbit (o.r.). Initially, the massive star starts from a 
distance of 10 o.r. from the centre of the binary. 
 For large values of V3 the collision radius is essentially equal to the initial 
radius of the binary orbit. When the massive star hits the binary, it simply tears it 
apart; there is no time to capture one of the members. When the massive star 
misses the binary, it kicks the binary away without tearing it apart but disturbs its 
internal movement, transforming the circular orbits in elliptical orbits, the more 
so the smaller the impact parameter.  
 For smaller values of V3 the collision radius gets larger as there is now 
enough time for the massive star to attract the binary in its neighborhood and to 
either tear it apart or to capture one of its members. As was seen in the 
configuration of Figure 24 (V3=2, green case in the present figure), most 
collisions result in a capture while at large values of V3 all collisions result in 
break-ups. In between, either capture or break-up may occur. Up to V3=2, one 
has mostly capture while above V3=5 one has mostly break up. The separator 
between capture and break up occurs in the 3<V3<5 region and its detailed shape 
depends on the particular configuration (green, red or black).  
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Figure 26: Dependence of the collision radius on the velocity V3 of the massive 
star for three different values of its mass: M3=2 (black), 3 (red) and 4 (green) 
times the common mass of the binary members. The left panel is for positive 
values of y and the right panel for negative values. In the large V3 region (break-
up) the scale is independent from M3 and uniquely defined by the size of the 
binary. In the lower V3 region, the collision radius decreases with M3 
approximately as M3

1/3, implying a cross-section proportional to M3
2/3. 



 39 

7. Summary and conclusions 
 

The present study has illustrated with numerous examples the 

phenomenon of capture which often takes place when a massive star 

approaches a binary. Depending on its impact parameter and kinetic energy, 

the massive star may capture one of the components of the binary and leave 

the other fly away alone. The notorious difficulty in solving the three-body 

problem analytically has been easily overcome using a very simple computer 

code. The complexity of the problem has been illustrated with examples 

displaying a strong chaoticity of the movement when very large perturbations 

happen to be induced. The concept of a collision cross-section has been 

introduced. At larger values of the relative velocity between the massive star 

and the binary, the cross-section is essentially equal to the area of the binary 

orbits and independent from the mass and initial kinetic energy of the massive 

star. In such cases, the binary is either torn apart (for impacts within the 

collision cross-section) or scattered away and perturbed in its internal 

movement for impacts outside the collision cross-section. At lower values of 

the relative velocity between the massive star and the binary, the cross-section 

is significantly larger than the area of the binary orbits. In such cases, the 

binary is torn apart and, in most cases, one of its members is captured by the 

massive star. The collision cross-section depends on the velocity of the 

massive star in a complicated way and is roughly proportional to M3
2/3.  

The importance of the capture phenomenon in astrophysics is 

particularly strong in dense environments such as globular clusters or the 

centre of galaxies. The case of the centre of the Milky Way has been 

discussed in some detail with a high density of X ray binaries suggesting the 

presence of many stellar black holes around Sgr A*. 
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