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1. Introduction 

A direct consequence of special relativity is that any sensible theory of 

gravitation must predict that light bends in the vicinity of a gravity field. As a result, 

light, or generally any electromagnetic radiation, emitted by a distant object and 

travelling near a very massive object in the foreground will appear to come from a 

point away from the real source and produce effects of mirage and of light 

concentration generally referred to as gravitational lensing.   

1.1 History 

Henry Cavendish in 1784 and Johann Georg von Soldner in 1801 had pointed 

out that Newtonian gravity might imply that starlight bends around a massive object. In 

1911, Soldner's calculation was repeated by Einstein, who noted in 1915, in the process 

of completing general relativity, that the result is only half the correct value. He 

became the first to calculate the correct value for light bending [1].  

The first observation of light deflection was 

performed by noting the change in position of stars as 

they passed near the Sun. In 1919, Sir Arthur 

Eddington and his collaborators observed a total solar 

eclipse allowing for such stars to be observed. 

Observations were made simultaneously in the cities 

of Sobral and Ceará (Brazil) and São Tomé and 

Príncipe (west coast of Africa). The result [2] made 

the front page of most major newspapers and made 

Einstein and his theory of general relativity world 

famous. The measurement was repeated by a team 

from the Lick Observatory in the 1922 eclipse, with 

results that agreed with the 1919 results and has been 

repeated several times since, most notably in 1973 by 

a team from the University of Texas. Considerable 

uncertainty remained in these measurements for 

Figure 1. One of Eddington's 
photographs of the 1919 solar 
eclipse experiment, presented in 
his 1920 paper announcing its 
success. 
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almost fifty years, until observations started being made at radio frequencies. It was not 

until the late 1960s that it was definitively shown that the amount of deflection was the 

full value predicted by general relativity, and not half that number.  

The phenomenon of gravitational lensing was first mentioned in 1924 by the St. 

Petersburg physicist Orest Chwolson [3] and quantified by Einstein in 1936 [4,5]. In 

his paper, he remarked “Of course, there is no hope of observing this phenomenon 

directly. First, we shall scarcely ever approach closely enough to such a central line. 

Second, the angle β will defy the resolving power of our instruments”. In this 

statement, he refers to the need for a perfect alignment to observe rings and his β is the 

so-called Einstein radius, the angular aperture of the ring. Here, Einstein was only 

considering the chance of observing rings produced by stars, which is low; however, 

the chance of observing those produced by larger lenses such as galaxies or black holes 

is higher since the angular size of an Einstein ring increases with the mass of the lens. 

Fritz Zwicky noted in 1937 that the effect could allow galaxy clusters to act as 

gravitational lenses. It was not until 1979 that this effect was confirmed by observation 

of the so-called “Twin QSO” SBS 0957+561 (QSO stands for Quasi Stellar Object, 

more commonly referred to as quasar; the Twin QSO had been discovered accidentally 

by D. Walsh, B. Carswell and R. Weymann using the Kitt Peak National Observatory 

2.1 m telescope) by Roger Lynds of the National Optical Astronomy Observatories and 

Vahe Petrosian of Stanford University who discovered giant luminous arcs in a survey 

of galaxy clusters. They published their findings in 1986 without knowing the origin of 

the arcs. In 1987, Genevieve Soucail of the Toulouse Observatory and her 

collaborators presented data of a blue ring-like structure in Abell 370 and proposed a 

gravitational lensing interpretation. J. Anthony Tyson of Bell Laboratories and 

collaborators conducted the first cluster weak lensing analysis in 1990. Tyson et al. 

detected a coherent alignment of the ellipticities of the faint blue galaxies behind both 

Abell 1689 and CL 1409+52 (Abell 1689, a galaxy cluster in the constellation Virgo, is 

one of the biggest and most massive galaxy clusters known and acts as a gravitational 

lens, distorting the images of galaxies that lie behind it). In 2006, David Wittman of the 

University of California at Davis and collaborators published the first sample of galaxy 

clusters detected via their lensing signals, independently of previous knowledge about 

them. 
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In the 1980s, astronomers realized that the combination of CCD imagers and 

computers would allow the brightness of millions of stars to be measured each night. In 

a dense field, such as the galactic centre or the Magellanic Clouds, many microlensing 

events per year could potentially be found. This led to efforts such as the Optical 

Gravitational Lensing Experiment, or OGLE, which has characterized hundreds of 

such events. 

1.2. General features 

One commonly distinguishes between three types of gravitational lensing: 

strong, weak and micro. 

One talks of strong lensing 

when there are easily visible 

distortions such as the formation of 

Einstein rings, arcs, and multiple 

images. In such cases, the source 

and the lens are well defined. 

Ideally, an Einstein ring occurs 

when the lens and the source are 

both spherical and exactly on the 

light of sight of the observer (Figure 

2). When the lens or the source is 

not spherical or when the alignment 

is not perfect, one observes multiple 

images of the same source or partial 

arcs scattered around the lens. The 

number and shape of these depends upon the relative positions of the source, lens, and 

observer, and the shape of the gravitational well of the lensing object.  

One talks of weak lensing when the distortions of the background sources are 

too small, say only a few percent, to allow for an analysis in terms of single source-lens 

pairs but sufficiently numerous to allow for a statistical analysis.  What is then 

observed is a preferred stretching of the background objects perpendicular to the 

direction to the centre of the lens. By measuring the shapes and orientations of large 

Figure 2. Einstein rings in the case of perfect (top) 
and approximate (bottom) alignment of the source 
and of the lens on the line of sight of the observer. 
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numbers of distant galaxies, their orientations can be averaged to measure the shear of 

the lensing field in any region. This, in turn, can be used to reconstruct the mass 

distribution in the area: in particular, the background distribution of dark matter can be 

reconstructed. Since galaxies are intrinsically elliptical and the weak gravitational 

lensing signal is small, a very large number of galaxies must be used in these surveys. 

These weak lensing surveys must carefully avoid a number of important sources of 

systematic error: the intrinsic shape of galaxies, the tendency of a camera's point spread 

function to distort the shape of a galaxy and the tendency of atmospheric seeing to 

distort images must be understood and carefully accounted for.  

Finally, microlensing refers to cases where the effect is too small to produce 

visible distortions in shape, but the amount of light received from a background source 

is observed to change with time while the source passes behind the lens. Microlensing 

has been used to search for brown wharfs in order to evaluate their contribution to dark 

matter and, more recently, to search for exoplanets with much success.  

The lensing object may be stars in the Milky Way in one typical case, with the 

background source being stars in a remote galaxy, or, in another case, an even more 

distant quasar. The effect is small, such that (in the case of strong lensing) even a 

galaxy with a mass more than 100 billion times that of the sun will produce multiple 

images separated by only a few arc seconds. Galaxy clusters can produce separations 

of several arc minutes. In both cases the galaxies and sources are quite distant, many 

hundreds of megaparsecs away from our Galaxy. 

Gravitational lenses act equally on all kinds of electromagnetic radiation, not 

just visible light. Weak lensing effects are being studied for the cosmic microwave 

background as well as galaxy surveys. Strong lenses have been observed in radio and 

X-ray regimes as well. If a strong lens produces multiple images, there will be a 

relative time delay between two paths: that is, in one image the lensed object will be 

observed before the other image. 

Gravitational lenses can be used to study the background source or the 

foreground lens. 

In the first case, they act as gravitational telescopes, because they concentrate 

the light from objects seen behind them, making very faint objects appear brighter, 
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larger and therefore more easily studied. Researchers at Caltech have used the strong 

gravitational lensing afforded by the Abell 2218 cluster of galaxies to detect the most 

distant galaxy known at the time (February 15, 2004) through imaging with the Hubble 

Space Telescope. Objects at such distances would not normally be visible, providing 

information from further back in time than otherwise possible. Similarly, microlensing 

events can be used to obtain additional information about the source star. In addition to 

the greater brightness, limb darkening can be measured during high magnification 

events. If the source star is part of a binary system, the orbital motion of the source can 

sometimes be measured (called the xallarap effect, by analogy to parallax which is 

caused by the orbital motion of the Earth). 

Observations of gravitational lensing can also be inverted to examine the lens 

itself. Direct measurements of the mass in any astronomical object are rare, and always 

welcome. Comparing mass and light typically involves assumptions about complicated 

astrophysical processes. Gravitational lensing is particularly useful if the lens is for 

some reason difficult to see. Gravitational microlensing can provide information on 

comparatively small astronomical objects, such as MACHOs (for Massive 

Astrophysical Compact Halo Object, such as brown dwarfs or large planets) within our 

own galaxy, or extrasolar planets (planets beyond the solar system). Strong and weak 

gravitational lensing of distant galaxies by foreground clusters can probe the amount 

and distribution of mass, which is dominated by invisible dark matter. The number of 

strong gravitational lenses throughout the sky can also be used to measure values of 

cosmological parameters such as the mean density of matter in the universe. Presently, 

the statistics do not place very strong limits on cosmological parameters, partly because 

the number of strong lenses found is relatively small. Weak gravitational lensing can 

extend the analysis away from these most massive clusters and, for example, 

reconstruct the large-scale distribution of mass, which is sensitive to cosmological 

parameters. 

1.3 Strong lensing 

The most spectacular manifestation of strong lensing is the formation of 

Einstein rings, which occurs when the source (such as a galaxy or star), the lens (such 

as another galaxy or a black hole) and observer are aligned. The first complete Einstein 
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ring, designated B1998+666, was discovered by collaboration between astronomers at 

the University of Manchester and NASA's Hubble Space Telescope in 1998. 

The angular size of an Einstein ring 

is given by the Einstein radius. In radians, 

it is 

 

where 

G is the gravitational constant, 

M is the mass of the lens, 

c is the speed of light, 

dL is the observer-lens distance, 

dS is the observer-source distance and  

dLS is the lens-source distance. 

Note that over cosmological distances, in general. 

Most rings have first been discovered in the radio range. Out of hundreds of 

gravitational lenses, about half a dozen of them are partial Einstein rings with 

diameters up to an arc second. As either the mass distribution of the lenses is not 

perfectly axially symmetrical, or the source, lens and observer are not perfectly 

aligned, Einstein rings are rarely perfect. A collection of Einstein rings observed by the 

Hubble Space Telescope is displayed in Figure 4.   

Using the Hubble Space Telescope (HST), a double ring has been found (Figure 

5), arising from the light from three galaxies at distances of 3, 6 and 11 billion light 

years. Such rings help in understanding the distribution of dark matter, dark energy, the 

nature of distant galaxies, and the curvature of the universe. The odds of finding such a 

double ring are 1 in 10,000. 

 

Figure 3. Gravitational lensing geometry. 
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Figure 4. A collection of 
Einstein rings observed with the 

Hubble Space Telescope. 

Figure 5. SDSSJ0946+1006 is a Double Einstein Ring. Credit: 
HST/NASA/ESA 
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Another manifestation of strong lensing is the formation of multiple images. 

The Einstein Cross (Q2237+0305) is a gravitationally lensed quasar that sits directly 

behind ZW 2237+030, Huchra's Lens. Four images of the same distant quasar appear 

around a foreground galaxy due to strong gravitational lensing (Figure 6). The quasar 

is located about 8 billion light years from Earth, while the lensing galaxy is located at a 

Figure 6. Examples of multiple images: the Einstein cross (left) and the Twin QSO 
(right). 

Figure 7. Other examples of multiple images seen by HST. 
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distance of 400 million light years. The apparent dimension of this galaxy is 0.87×0.34 

arc minutes, while the apparent dimension of the cross in its centre accounts for only 

1.6×1.6 arc seconds. The Einstein Cross can be found in Pegasus. Further examples of 

multiple images revealed by the HST are shown on Figure 7. 

1.4 Weak lensing 

While the presence of any mass bends the path of light passing near it, this 

effect rarely produces the giant arcs and multiple images associated with strong 

lensing. Most lines of sight in the universe are in the weak lensing regime, in which the 

deflection is impossible to detect in a single background source. However, in such 

cases, the presence of the foreground mass can be detected by way of a systematic 

alignment of background sources around the lens. Weak gravitational lensing is thus an 

intrinsically statistical measurement, but it provides a way to measure the masses of 

astronomical objects without requiring assumptions about their composition or 

dynamical state.  

The effect of gravitational lensing can be split into two terms, the convergence 

and shear. The convergence term magnifies the background objects by increasing their 

size, and the shear term stretches them tangentially around the foreground mass. To 

measure the tangential alignment, it is necessary to measure the ellipticities of the 

background galaxies and construct a statistical estimate of their systematic alignment. 

The fundamental problem is that galaxies are not intrinsically circular, so their 

measured ellipticity is a combination of their intrinsic ellipticity and the gravitational 

lensing shear. Typically, the intrinsic ellipticity is much greater than the shear (by a 

factor of 3-300, depending on the foreground mass). The measurements of many 

background galaxies must be combined to average down this “shape noise”. The 

orientation of intrinsic ellipticities of galaxies should be almost entirely random, so any 

systematic alignment between multiple galaxies can generally be assumed to be caused 

by lensing. 

Another major challenge for weak lensing is correction for the point spread 

function (PSF) due to instrumental and atmospheric effects, which causes the observed 

images to be smeared relative to the “true sky”. This smearing tends to make small 

objects more round, destroying some of the information about their true ellipticity. As a 
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further complication, the PSF typically adds a small level of ellipticity to objects in the 

image, which is not at all random, and can in fact mimic a true lensing signal. Even for 

the most modern telescopes, this effect is usually at least the same order of magnitude 

as the gravitational lensing shear, and is often much larger. Correcting for the PSF 

requires building a model for how it varies across the field. Stars in our own galaxy 

provide a direct measurement of the PSF, and these can be used to construct such a 

model, usually by interpolating between the points where stars appear on the image. 

This model can then be used to reconstruct the “true” ellipticities from the smeared 

ones. Angular diameter distances to the lenses and background sources are important 

for converting the lensing observables to physically meaningful quantities. These 

distances are often estimated using known redshifts. Redshift information is also 

important in separating the background source population from other galaxies in the 

foreground, or those associated with the mass responsible for the lensing.  

Of particular interest is the case of galaxy clusters, which are among the largest 

gravitationally bound structures in the Universe, surpassed only by superclusters, with 

approximately 80% of cluster content in the form of dark matter. The gravitational 

fields of these clusters deflect light-rays travelling near them, possibly causing 

dramatic distortions by strong lensing, such as multiple images, arcs, and rings (Figure 

8). 

Figure 8. A distant galaxy lensed by Cluster Abell 2218. 
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More generally, the effect causes small, but statistically coherent, distortions of 

background sources on the order of 10% by weak lensing.  

The projected mass density can be recovered from the measurement of the 

ellipticities of the lensed background galaxies. However, a mass distribution 

reconstructed without knowledge of the magnification suffers from a limitation known 

as the mass sheet degeneracy. It can be lifted using an independent measurement of the 

magnification. The cluster centre is determined by using a reconstructed mass 

distribution or optical or X-ray data. Knowledge of the lensing cluster redshift and the 

redshift distribution of the background galaxies is also necessary. Individual mass 

estimates from weak lensing can only be derived for the most massive clusters, and the 

accuracy of these mass estimates are limited by projections along the line of sight.  

Cluster mass estimates determined by lensing are valuable because the method 

requires no assumption about the dynamical state or star formation history of the 

cluster. Lensing mass maps can also potentially reveal "dark clusters," clusters 

containing overdense concentrations of dark matter but relatively insignificant amounts 

of normal matter. Comparison of the dark matter distribution mapped using lensing 

with the normal matter distribution mapped using optical and X-ray data reveals the 

interplay of the dark matter with the stellar and gas components. A notable example of 

such a joint analysis is the so-called Bullet Cluster (Figure 9). 

Another interesting case of weak (and occasionally strong) lensing is galaxy-

galaxy lensing in which the foreground object responsible for distorting the shapes of 

background galaxies is itself an individual galaxy (as opposed to a galaxy cluster). It 

produces shear correlations of ~1%, weaker than the signal due to cluster lensing. 

J.A. Tyson and collaborators had first postulated the concept of galaxy-galaxy 

lensing in 1984, but the observational results of their study were inconclusive. It was 

not until 1996 that evidence of such distortion was tentatively discovered, with the first 

statistically significant results not published until the year 2000. Since those initial 

discoveries, the construction of larger, high resolution telescopes and the advent of 

dedicated wide field galaxy surveys have greatly increased the observed number 

density of both background source and foreground lens galaxies, allowing for a much  
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more robust statistical sample of galaxies, making the lensing signal much easier to 

detect. Today, measuring the shear signal due to galaxy-galaxy lensing is a widely used 

technique in observational astronomy and cosmology, often used in parallel with other 

measurements in determining physical characteristics of foreground galaxies. 

Due to the relatively low mass of field lenses and the inherent randomness in 

intrinsic shape of background sources, the signal is impossible to measure on a galaxy 

by galaxy basis and must be obtained by combining the signals of many individual lens 

measurements together (a technique known as “stacking”). Galaxy-galaxy lensing is 

used to measure galaxy mass density profiles (from the central cores of galaxies where 

normal matter dominates to the outer halo where dark matter dominates). Comparing 

the measured mass to the luminosity in a specific filter, galaxy-galaxy lensing can also 

provide insight into the mass to light ratios of field galaxies. Galaxy mass evolution 

can also be studied by restricting the lens sample of a galaxy-galaxy lensing study to lie 

at only one particular redshift.  Finally, gravitational lensing by large-scale 

structure also produces an observable pattern of alignments in background galaxies, but 

Figure 9. Image of the Bullet Cluster from the Hubble Space Telescope with total 
mass contours (dominated by dark matter) from a lensing analysis overlaid. 
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this distortion is only ~0.1%-1% - much more subtle than cluster or galaxy-galaxy 

lensing. It was not until 2000 that four independent groups published the first 

detections of cosmic shear. Subsequent observations have started to put constraints on 

cosmological parameters that are competitive with other cosmological probes. 

Weak lensing also has an important effect on the Cosmic Microwave 

Background (CMB) and diffuse 21 cm line radiation.  

1.5 Microlensing 

Microlensing is caused by the same physical effect as strong lensing and weak 

lensing, but it is studied using very different observational techniques. In strong and 

weak lensing, the mass of the lens is large enough for the displacement of light by the 

lens to be resolved with a high-resolution telescope such as the HST. With 

microlensing, the lens mass is too low (a planet or a star) for the displacement of light 

to be observed easily, but the apparent brightening of the source may still be detected. 

In such a situation, the lens will pass by the source in a reasonable amount of time, 

seconds to years instead of millions of years. As the alignment changes, the source's 

apparent brightness changes, and this can be monitored to detect and study the event. 

Thus, unlike with strong and weak gravitational lenses, a microlensing event is a 

transient phenomenon. Unlike with strong and weak lensing, no single observation can 

establish that microlensing is occurring. Instead the rise and fall of the source 

brightness must be monitored over time using photometry. The function of brightness 

versus time is known as a light curve. A typical microlensing light curve (Figure 10) 

has a very simple shape, and only one physical parameter can be extracted: the time 

scale, which is related to the lens mass, distance, and velocity. There are several 

effects, however, that contribute to the shape of more atypical lensing events. If the 

lens mass is not concentrated in a single point, the light curve can be dramatically 

different and may exhibit strong spikes in the light curve, as can be seen when the lens 

is a binary star or a planetary system. In extremely bright or quickly changing 

microlensing events, the source star cannot be treated as an infinitesimally small point 

of light: the size of the star's disk matters. For events  
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lasting for months, the motion of the Earth around the Sun can cause the alignment to 

change slightly, affecting the light curve. 

Most focus is currently on the more unusual microlensing events, especially 

those that might lead to the discovery of extra solar planets (so-called exoplanets).  In 

practice, because the alignment needed is so precise and difficult to predict, 

microlensing is very rare. Events, therefore, are generally found with surveys, which 

photometrically monitor tens of millions of potential source stars, every few days for 

several years. Dense background fields suitable for such surveys are nearby galaxies, 

such as the Magellanic Clouds and the Andromeda galaxy, and the Milky Way bulge. 

In each case, the lens population studied comprises the objects between Earth and the 

source field: for the bulge, the lens population is the Milky Way disk stars, and for 

external galaxies, the lens population is the Milky Way halo, as well as objects in the 

other galaxy itself. The density, mass, and location of the objects in these lens 

populations determine the frequency of microlensing along the line of sight, which is 

characterized by a value known as the optical depth due to microlensing. The optical 

depth is, roughly speaking, the average fraction of source stars undergoing 

microlensing at a given time, or equivalently the probability that a given source star is 

undergoing lensing at a given time. The MACHO project found the optical depth 

toward the LMC to be 1.2×10−7 or about 1 in 8,000,000, and the optical depth toward 

the bulge to be 2.43×10−6 or about 1 in 400,000.  

Complicating the search is the fact that for every star undergoing microlensing, 

there are thousands of stars changing in brightness for other reasons (about 2% of the 

Figure 10. A typical microlensing event (OGLE, 2005). 
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stars in a typical source field are naturally variable stars) and other transient events 

(such as novae and supernovae), and these must be weeded out to find true 

microlensing events. After a microlensing event in progress has been identified, the 

monitoring program that detects it often alerts the community to its discovery, so that 

other specialized programs may follow the event more intensively, hoping to find 

interesting deviations from the typical light curve. This is because these deviations – 

particularly those due to exoplanets – require hourly monitoring to be identified, which 

the survey programs are unable to provide while still searching for new events. The 

question of how to prioritise events in progress for detailed follow-up with limited 

observing resources is very important for microlensing researchers today. 

Gravitational lensing was first observed in 1979, in the form of a quasar lensed 

by a foreground galaxy. That same year, Kyongae Chang and Sjur Refsdal showed that 

individual stars in the lens galaxy could act as smaller lenses within the main lens, 

causing the source quasar's images to fluctuate on a timescale of months. Bohdan 

Paczyński first used the term “microlensing” to describe this phenomenon. This type of 

microlensing is difficult to identify because of the intrinsic variability of quasars, but in 

1989 Mike Irwin and collaborators published detection of microlensing in Huchra's 

Lens. 

In 1986, Paczyński proposed using microlensing to look for dark matter in the 

form of massive compact halo objects (MACHOs) in the Galactic halo, by observing 

background stars in a nearby galaxy. Two groups of particle physicists working on 

dark matter heard his talks and joined with astronomers to form the Anglo-Australian 

MACHO collaboration and the French EROS collaboration. In 1991 Paczyński 

suggested that microlensing might be used to find planets, and in 1992 he founded the 

OGLE microlensing experiment, which began searching for events in the direction of 

the Galactic bulge. 

The first two microlensing events in the direction of the Large Magellanic 

Cloud that might be caused by dark matter were reported in back to back Nature papers 

by MACHO and EROS in 1993, and in the following years, events continued to be 

detected. The MACHO collaboration ended in 1999. Their data refuted the hypothesis 

that 100% of the dark halo comprises MACHOs, but they found a significant 

unexplained excess of roughly 20% of the halo mass, which might be due to MACHOs 
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or to lenses within the Large Magellanic Cloud itself. EROS subsequently published 

even stronger upper limits on MACHOs. Despite not solving the dark matter problem, 

microlensing has been shown to be a useful tool for many applications. Hundreds of 

microlensing events are detected per year toward the Galactic bulge, where the 

microlensing optical depth (due to stars in the Galactic disk) is about 20 times greater 

than through the Galactic halo. In 2007, the OGLE project identified 611 event 

candidates, and the MOA project (a Japan-New Zealand collaboration) identified 488 

(although not all candidates turn out to be microlensing events, and there is a 

significant overlap between the two projects). In addition to these surveys, follow-up 

projects are underway to study in detail potentially interesting events, primarily with 

the aim of detecting extra solar planets.  

In typical microlensing events, the Einstein radius is so small that it is not 

generally observed, but it can be observed in some extreme events as described below. 

During a microlensing event, the brightness of the source is amplified by a 

factor A, which is expressed as a function of a dimensionless number u, defined as the 

angular separation of the lens and the source divided by the Einstein radius, as shown 

below: 

 

This function has several important properties. A(u) is always greater than unity, 

so microlensing can only increase the brightness of the source star, not decrease it. A(u) 

always decreases as u increases, so the closer the alignment, the brighter the source 

becomes. As u approaches infinity, A(u) approaches 1, so that at wide separations, 

microlensing has no effect. Finally, as u approaches 0, A(u) approaches infinity as the 

images approach an Einstein ring. For perfect alignment (u = 0), A(u) is theoretically 

infinite. In practice, finite source size effects will set a limit to how large an 

amplification can occur for very close alignment, but some microlensing events can 

cause a brightening by factors of hundred. 

Unlike in strong or weak lensing, where the lens is a galaxy or cluster of 

galaxies, in microlensing u changes significantly in a short period of time. The relevant 
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time scale is called the Einstein time tE, and is given by the time it takes the lens to 

traverse an angular distance of one Einstein radius. For typical microlensing events, tE 

is on the order of a few days to a few months.  

 

The minimum value of u, called umin, determines the peak brightness of the 

event. 

In a typical microlensing event, the light curve is well fit by assuming that the 

source is a point, the lens is a single point mass, and the lens is moving in a straight 

line. In these events, the only physically significant parameter that can be measured is 

the Einstein timescale tE. Since this observable is a degenerate function of the lens 

mass, distance, and velocity, one cannot determine these physical parameters from a 

single event. However, in some cases, events can be analysed to yield the additional 

parameters of the Einstein angle and parallax. These include very high magnification 

events, binary lenses, parallax and xallarap events, and events where the lens is visible. 

Although the Einstein angle is too small to be directly visible from a ground-

based telescope, several techniques have been proposed to observe it. 

In rare cases, when the lens passes directly in front of the source star, the finite 

size of the source star becomes an important parameter. These measurements require 

an extreme alignment between source and lens. 

If the lens is a binary star with separation of roughly the Einstein radius, the 

magnification pattern is more complex than in the single star lenses. In this case, there 

are typically three images when the lens is distant from the source, but there is a range 

of alignments where two additional images are created. These alignments, known as 

caustics, produce very high magnifications and may some time be used to measure the 

Einstein radius.  

In principle, the Einstein parallax can be measured by two observers 

simultaneously observing the event from different locations, e.g. from the earth and 

from a distant spacecraft, and comparing the amplifications that they observe. Such a 

direct measurement was recently reported using the Spitzer Space Telescope. More 
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typically, the Einstein parallax is measured from the non-linear motion of the observer 

caused by the rotation of the Earth about the Sun. It was first reported in 1995 and has 

been reported in a handful of events since.  

If the source star is a binary star, then it too will have a non-linear motion which 

can also cause slight, but detectable changes in the light curve. This effect is known as 

Xallarap (parallax spelled backwards). 

If the lensing object is a star with a planet orbiting it (Figure 11), this is an 

extreme example of a binary lens event. If the source crosses a caustic, the deviations 

from a standard event can be large even for low mass planets. These deviations allow 

one to infer the existence and determine the mass and separation of the planet around 

the lens. Deviations typically last a few hours or a few days. Because the signal is 

strongest when the event itself is strongest, high-magnification events are the most 

promising candidates for detailed study. Typically, a survey team notifies the 

community when they discover a high-magnification event in progress. Follow-up 

groups then intensively monitor the ongoing event, hoping to get good coverage of the 

deviation if it occurs. When the event is over, the light curve is compared to theoretical 

models to find the physical parameters of the system. The parameters that can be 

determined directly from this comparison are the mass ratio of the planet to the star, 

and the ratio of the star-planet angular separation to the Einstein angle. From these 

ratios, along with assumptions about the lens star, the mass of the planet and its orbital 

distance can be estimated. The first success of this technique occurred in 2003 by both 

OGLE and MOA of the microlensing event OGLE 2003–BLG–235 (or MOA 2003–

BLG–53). Combining their data, they found the most likely planet mass to be 1.5 times 

the mass of Jupiter. As of January 2011, eleven exoplanets have been detected by this 

method. Notably, at the time of its announcement in January 2006, the planet OGLE-

2005-BLG-390Lb probably had the lowest mass of any known exoplanet orbiting a 

regular star, with a median at 5.5 times the mass of the Earth and roughly a factor two 

uncertainty. This record was contested in 2007 by Gliese 581 c with a minimal mass of 

5 Earth masses, and since 2009 Gliese 581 e is the lightest known "regular" exoplanet, 

with minimum 1.9 Earth masses. Figure 12 illustrates the progress achieved. 

Comparing this method of detecting extrasolar planets with other techniques 

such as the transit method, one advantage is that the intensity of the planetary deviation 
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does not depend on the planet mass as strongly as effects in other techniques do. This 

makes microlensing well suited to finding low-mass planets. One disadvantage is that 

follow-up of the lens system is very difficult after the event has ended, because it takes 

a long time for the lens and the source to be sufficiently separated to resolve them 

separately. 

 

 

 

Figure 11. Detection of exoplanets by gravitational 
microlensing. 

Figure 12. Exoplanets discovered using microlensing, by year, 
through 2010-01 
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2. Theoretical basis 

2.1 Special relativity 

A brief reminder of the bases of special relativity is necessary to introduce what 

it implies when dealing with gravitation. Unless otherwise specified we use natural 

units where ħ = c =1. 

The basis of special relativity is the so-called relativity principle according to 

which the laws of nature are the same in two frames in uniform movement with respect 

to each other, usually referred to as inertial frames. The movements in two such frames 

are related by the so-called Lorentz transformation. 

Lorentz transformations along Ox read (y and z being unchanged) 

 x’= x coshα + t sinhα 

 t’ = x sinhα + t coshα 

The system S in which x and t are measured moves along the x axis, which is the 

same as the x’ axis, with velocity β=tanhα measured in the system S’ where x’ and t’  

are measured.  

In S’ two events measured at a same time t’  give  

 (x1–x2) sinhα + (t1– t2) coshα =0 and therefore  

x’1–x’2 =(x1–x2) coshα +(t1–t2) sinhα  

 = (x1–x2) (coshα – sinh2α/coshα)  

 = (x1–x2) /coshα. 

Namely distances appear to be contracted by a factor γ =coshα =1/√(1–β2). 

On the contrary, two events measured at a same location x in S give  

t’ 1–t’2  = (t1–t2) coshα . Namely time differences appear to be dilated by the same 

factor γ. 

This result is not as trivial as it may sound, as it might seem to introduce an 

asymmetry between S and S’. Superficially, one might think that distances measured in 

S will appear dilated with respect to S’ and that time differences measured in S will 
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appear contracted, but it is not true of course. It is the measurement process that is not 

symmetric: to measure a distance in the fixed frame you compare two events that occur 

at the same time in the fixed frame while to measure a time difference in the fixed 

frame you compare two events that occur at the same location in the moving frame. It 

is important to have well understood this somewhat subtle difference.  

As exp(±iα)=cos(α)±isin(α), cos(α)={exp(iα)+exp(–iα)}/2=cosh(iα) and 

sin(α)={exp(iα)–exp(–iα)}/2i=–isinh(iα). The Lorentz transformation may therefore be 

rewritten, replacing  coshα by cos(–iα)and sinh(α) by isin(–iα) 

 x’= x cos(iα) – it sin(i α) 

 it’ = x sin(iα) + it cos (iα) 

A Lorentz transformation is therefore a rotation by an angle iα in the (x, it) 

plane. In the same way as a rotation in the (x,y) plane leaves x2+y2 invariant, the 

Lorentz transformation leaves x2+(it) 2=x2–t2 invariant. And in the same way as the 

rotation by an angle α simply increases the polar angle θ of the vector (x,y) by α, the 

Lorentz transformation increases by iα the equivalent of θ, which can be written as 

atan (it/x)=iargth(t/x). The quantity argth (t/x), which increases by α in the Lorentz 

transformation, may also be written1 ½ln {(t+x)/(t–x)}. When referred to the energy-

momentum four vector, this quantity is called rapidity. 

If a velocity vx=dx/dt parallel to Ox is measured in S, the velocity vx’=dx’/dt’ 

measured in S’ is (dx coshα+dtsinhα)/(dx sinhα+dt coshα)=(vx+β)/(1+βvx). One 

recognizes here the law of addition of tanh, the product of two rotations being a 

rotation by the sum of the rotation angles. Whatever vx<1 and β<1, vx’ is still a tanh 

and always smaller than 1: the light velocity cannot be exceeded by adding velocities 

that are themselves smaller than the light velocity. However one may conceive the 

existence of particles having velocities larger than the light velocity, such particles 

have received a name, tachyons, even though no evidence for them has ever been 

found. If a velocity vy=dy/dt normal to Ox is measured in S, the velocity vy’=dy’/dt’ 

measured in S’ is dy/(dx sinhα+dt coshα)=vy/[γ(1+βvx)]. Note that vy’/vx’=v y/[γ(vx+β)]  

                                              
1 Indeed tanh(½ln {(t+x)/(t–x)})  
={exp[½ln{(t+x)/(t–x)]–exp[–½ln{t+x)/(t–x)]}/{exp[½ln{(t+x)/(t–x)]+exp[–½ln{t+x)/(t–x)]} ={ √(t+x)/(t–x)–
√(t–x)/(t+x)}/{√(t+x)/(t–x)+√(t–x)/(t+x)}=(t+x–t+x)/(t+x+t–x)=x/t . 
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and v’2=v’ x
2+v’ y

2=(vx
2+2βvx+β

2+vy
2–β2vy

2)/(1+βvx)
2. Writing v2=vx

2+vy
2   we find 

v’2–1=(v2–1)(1–β2)/(1+βvx)
2. In particular, as v’2–1 and v2–1 have the same sign, 

velocities smaller than the light velocity remain so and v=1 implies v’=1. 

Finally, let us recall that energy E and momentum p form a four vector, 

implying that E2–p2=m2, m being the rest mass of the particle, a scalar. Its rapidity 

(measured along Ox), as was already said, is y=½ln {(E+px)/(E–px)}. The leading terms 

of the development of E and p are 

E=m+½mv2 and p=mv. 

2.2 Gravity of photons 

The idea that gravity can be described as a 

as a geometric property of space-time rather than 

than as a dynamical process is at the root of 

general relativity. It makes an elegant use of the 

a remark – which was made at Galileo time but 

but had not yet been made use of – that all 

masses fall in the same way in a gravity 

field. In Newtonian language this implies that the inertial and gravitational masses are 

equal2 and are irrelevant to energy conservation: both the gravity potential and the 

kinetic energy are proportional to it. The extension of the relativity principle from 

inertial frames to free falling frames allows for describing locally, in any small space-

time domain, the gravity field by an adequate acceleration given to the free-falling 

frame. Without going much further into the mathematics implied by these statements, 

one can deduce a host of important consequences touching the need for a revision of 

our concepts of space and time and for giving up special relativity, retaining it only 

locally.  

                                              
2 The first accurate measurement of the equality of the inertial and gravitational masses was due to Roland von 
Eötvös. It was later considerably improved by Robert H. Dicke and Vladimir B. Braginskii in the gravity field of 
the Sun and, more recently, by Eric G. Adelberger. The two masses are known to be equal to within 10–12. A very 
precise analysis of the relative motion of the Moon with respect to the Earth, using laser reflectors left on the 
Moon by Apollo 11, 14 and 15 and Linakhod 2, has shown that the gravitational binding energy contributes 
identically to the inertial and gravitational masses.  
 

 

Figure 13. Gravity of photons 
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As a very simple illustration, consider a homogeneous gravity field directed 

along Oz in S. Let γ be the acceleration (Figure 13). In the free falling frame S’ defined 

by the transformation z’=z–1/2γt2 all masses have a uniform linear movement. 

Extending the principle of relativity to this free falling frame we obtain a number of 

interesting results. 

Take two points in S, A and B, on top of each other, A above B at a distance h 

from it. Send a photon of energy E from A to B. In B, the photon has an energy E’, 

which would be equal to E if the gravity field had no action on massless particles. To 

evaluate it consider the event in the free falling frame S’ where the gravitational field 

vanishes. This system starts at zero velocity from A and reaches a velocity γt in B, with 

t=h being the time it took for the photon to go from A to B. A photon being massless 

has equal energy and momentum, E=p. At B, the Lorentz transformation reads E’= 

coshα E+ sinhα p where tanhα = γh. To first order in α, E’=E+Eγh, namely the photon 

has acquired an additional energy Eγh in the gravity field, corresponding to the usual 

m0γh term in classical Newton mechanics, m0 being the rest mass. It is indeed E and not 

m0 that matters, it is energy that weighs, not rest mass3. Accordingly, when a star 

having a mass M and a radius R emits a photon of frequency ν, this photon is red 

shifted when it reaches far distances by an amount (remember that E=ħν) ∆ν/ν=∆E/E= 

γR=GM/R. One speaks of a gravitational red shift4. In the case of the Sun, the radius is 

110 times larger than the Earth radius but the density is 4 times smaller, hence γ is 27 

times larger, that is 0.27 km/s2 and ∆ν/ν=0.27×110×6400/(3 105)2=2 10–6. In the case 

of a neutron star ∆ν/ν may take values of order unity, in which case this first order 

estimate is no longer valid. 

  

 

                                              
3 While m0 was a scalar, E is not: gravity is not a scalar field. E is the fourth component of a four-vector, 
implying that gravity is in fact a tensor field: we will have to consider the energy-momentum tensor to describe 
what gravity couples to in the general case of a non uniform gravity field. At the end of the XIXe century, with 
the success of Maxwell equations, and even shortly after special relativity, many tried to describe gravity as a 
vector field but it had to fail. The carrier of gravity, the so-called graviton, has accordingly spin 2. 
4 Gravitational red shift on Earth (10–16 per meter!) has been measured using the Mössbauer effect by Robert V. 
Pound and his colleagues to an accuracy of one percent. Using a hydrogen maser clock in a rocket at 10 000 km 
altitude, Robert F. C. Vessot and collaborators have measured the gravitational red shift to an accuracy of 2 parts 
in 104. 
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2.3 Schwarzschild metric 

Another way to look at the action of gravity on photons is to consider a mass M 

isolated in space, a star or a galaxy, and compare two different free falling frames: one 

has just enough velocity to escape to infinity, namely its metric is defined by the 

normal special relativity metric, ds2=dt2–dl2; the other has less, enough to reach a 

distance r from M, at which point its velocity cancels and it falls back onto M. The 

timing is such that the first frame coincides with the second at the very moment where 

the latter has reached its turning point. The velocity V of the first frame at this moment 

is the escape velocity at r, such that 1/2V2=MG/r , that is V=√ (2MG/r) (we assume that 

r is large enough for V to be much smaller than c and Newtonian arithmetic to apply). 

The metric in the second frame is trivially obtained from that in the first frame by 

Lorentz transformation: distances are contracted and times dilated by a same factor, 

1/√(1–V2)=1/√(1–2MG/r). Hence the metric in the second frame: ds2=(1–2MG/r)dt2–

(1–2MG/r)–1dr2. It is called the Schwarzschild metric. Introducing the polar angles θ 

and φ, which are unaffected, it reads: 

 ds2= (1–2MG/r)dt2–(1–2MG/r)–1dr2–r2(sin2θdφ2+dθ2). 

A singularity occurs at RSchwarzschild=2MG, the Schwarzschild radius, where the 

escape velocity is equal to the light velocity (equivalently, where a body falling from 

infinity, originally with zero velocity, has been accelerated to the light velocity). It 

corresponds to black holes.  

The Schwarzschild metric, written here in the case of a single mass isolated in 

space, is in fact valid in a much more general case: Birkhoff has shown that 

Schwarzschild’s metric holds in empty space surrounding any spherically symmetric 

mass distribution, even if this empty space is itself embedded in a larger, spherically 

symmetric distribution of matter.   

3. Bending of light 

3.1 Gravitational delay 

Consider light travelling from the surface of the Sun to the Earth, namely 

ds=dθ=dφ=0. Then dt=dr/(1–2MG/r). The time t taken by the light to reach the Earth 

is therefore ∫dr/(1–2MG/r)=∫rdr/(r–2MG)=∫(u+2MG)du/u where u=r–2MG. 
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Hence t=t0+2MGln{(aearth–2MG)/(Rsun–2MG)} where t0 is the time in the 

absence of gravity, aearth is the radius of the Earth orbit and Rsun is the Sun radius. 

Putting numbers in gives a gravitational delay of the order of 50 µs, namely 10–7 times 

the uncorrected time. When sending a radar signal from the Earth to Venus and back, 

one may compare the extreme situations where Venus is on the other side or on the 

same side as the Earth with respect to the Sun, almost lined up in both cases. Then the 

difference in travel time corresponds to two full traversals near the Sun, namely 

4×50=200 µs. This has been verified with a precision of the order of a percent. The 

above calculation neglected the delay experienced by the photons when passing by the 

Sun because of their angular deviation. To estimate it, we set ds=dr=dθ=0 and θ=π/2 

in the Schwarzschild metric. Hence, dt=rdφ/(1–2MG/r). Putting numbers in, it 

corresponds to less than 10% of the gravitational delay calculated above.  

3.2 Gravitational lensing  

The gravitational delay for a far away star 

seen near the Sun edge (Figure 14) is twice that 

given above for the gravitational delay from the 

Sun to the Earth, namely ∆t=4MGln(R–2MG) + 

terms that do not depend on R. Taking the 

derivative, we obtain  d(∆t)/dR ~ –4MG/R, R 

being now the closest distance of approach to the 

Sun. This measures the angle by which the wave 

front planes are bent when passing near the Sun, 

which is also the angle by which the light rays are bent since they are normal to the 

wave fronts. It corresponds to nearly 2 seconds of arc, which is a measurable quantity.  

The Sun may be thought of as being a weak lens with focal length equal to its 

radius divided by this angle of deflection, namely some 550 AU. As we saw in the 

introduction, such gravitational lensing effects are seen in many instances; in particular 

they may produce so called Einstein rings on very distant quasars. it is important to 

note that the bending of light is independent from the light frequency and applies 

equally not only to visible lights of different colours (Figure 15) but also to radio 

waves and X-rays.   

Figure 14. Gravitational lensing 
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Figure 15. Gravitational microlensing in two different colors showing the increase of 

luminosity of a LMC (Large Magellanic Cloud) star in the background resulting from the 

passage in front of it of an obscure object in the halo of our galaxy. 

 

Rather than calculating the total deviation experienced by light from infinity to 

infinity when passing by a massive object, let us calculate the form taken by the 

differential bending angle at a distance r from the center of the massive object (the 

lens).  

We start with a photon at a distance r from the centre O of a spherically 

symmetric lens of mass M and radius R. The Schwarzschild radius of the lens is 

R*=2GM. We define λ and ρ from R*=λR and r= ρR. We choose the x axis as the line 

joining the centre of the lens to the photon. We call θ the angle between the light ray 

and the line joining the photon to the centre of the lens. From the Schwarzschild 

metric, it is clear that the photon stays in the xOy plane which contains the initial ray. 

The velocity of light at a distance r from the centre of the lens is V=1/γ2 where one γ 

factor is for time dilatation and one for space contraction. From Schwarzschild metric 

V=1–2GM/r=1–λ/ ρ. 

Moving from 1 to 2 (δ infinitesimal), r increases by dr=δsinθ and V by dV= –

2GM ∂(1/r)∂r=2GM δsinθ/r2. When the photon moves by ds in 1, it moves by 

ds+d(ds) in 2 with d(ds)=(dV/V)ds. Defining dσ=ds/R, the equal phase plane rotates by 

dω=d(ds)/δ= 2GMsinθds/(Vr2)=λsinθdσ/ρ/(ρ–λ).  
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Figure 16. Geometry of light bending (see text). 

Moreover, independently from gravitational bending, θ changes by 

dθ=(ds)sinθ/r=sinθdσ/ρ. Therefore, putting both effects together and defining  

ζ= λ/ρ=R*/r , we obtain dθ= sinθdσ/ρ – λsinθdσ/ρ/(ρ–λ)  

 

 

This is the equation which we shall be using throughout the present work, using 

a computer code to trace rays in small steps of dσ=0.01. Note that R is absent from this 

equation: the bending is defined by the ratio between the distance to the lens centre and 

the Schwarzschild radius of the lens. Of course, when the photon reaches the lens 

surface it is absorbed and cannot travel farther.   

 

 

 

 

 

 

 

 

dθ/dσ=sinθ(ρ–2λ)/(ρ[ρ–λ])=(sinθ/ρ)([1–2ζ]/[1– ζ]) 
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Figure 17. Einstein rings (see text). 
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Before leaving the subject, let us demonstrate the relation giving the angular 

aperture of an Einstein ring, which has been mentioned earlier. In the limit of small 

deviations and perfect alignment (Figure 17), θdS=2αdLS=4GMdLS/b and b= θdL → 

θ2dLdS=4GMdLS and θ=2√(GMdLS/[dLdS]) . 

 

3.3 Light rays  

The fundamental equation of light bending has been computer coded in order to 

track light rays from a remote source in the vicinity of a gravitational lens. The source 

has been arbitrarily located 10 lens radii away from the centre of the spherical lens (we 

say arbitrarily because the source may in fact be chosen anywhere upstream on that 

ray). As light rays remain in the plane containing the initial ray and the centre of the 

lens, the problem is 2-dimensional. Rays emitted from the source at various angles α0 

from the line joining the source and the centre of the lens are displayed in Figures 18 

and 19 for various values of λ. When α0 is small, the ray lands on the surface of the 

lens and is absorbed. When α0 exceeds some limit angle, αlimit, the ray is bent by the 

lens and escapes it. For a same value of α0, bending increases with λ. The λ=0 case (top 

left panel of Figure 18) corresponds to αlimit=arcsin(1/10)=0.1. When λ increases, αlimit 

also increases and reaches ~21o in the case of a black hole lens (λ=1). Attempting a 

precise determination of αlimit reveals a very fast increase of the global bending in its 

vicinity. This is illustrated in Figure 20 where such light rays are displayed and the 

dependence of αlimit on λ is shown in Figure 21. 
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Figure 18.  Light rays traced for λ=0, 0.1, 0.2, 0.3, 0.4 and 0.5. 
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Figure 19.  Light rays traced for 
λ=0.6, 0.7,0.8, 0.9 and 1. 
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Figure 20. Three examples of rays in the vicinity of  α0= αlimit. The values of λ 
are 0.5, 0.6 and 1 respectively. 

Figure 21. Dependence of αlimit on λ. 
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We expect rays in the vicinity of α0= αlimit to be bent by 4MG/R=2λ as was 

calculated in Section 3.2 in the small bending approximation. This is indeed what we 

find with the simulation (Figure 22) but as soon as λ exceeds a few percent, bending 

increases much faster than linearly and the light ray may indeed curl around the source 

when approaching the black hole limit. 

 

 

 

 

 

 

 

 

 

 

4. Einstein rings 

4.1 Strategy and useful relations 

We now consider the formation of Einstein rings in practical situations, namely 

for small bending angles at arc minute scale or lower. We restrict the study to spherical 

lenses. In such cases, the bending angle 2α takes the simple form 2R*/b where b is the 

impact parameter, namely α=λ/b, with b measured in units of R, the lens radius. In the 

plane containing the point source S, the centre L of the lens and the observer O, we 

have (Figure 23) the angle relations 

 (SAL)=(LAO)=½(π–2α) 

 (SLA)= π–θ–(SAL)= π/2–θ+α 

 (OLA)= π–θE–(LAO)= π/2–θE+α  

Figure 22. Dependence of ∆α on λ for two different ranges of 
λ. 
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 (SLA)+(ALO)+(OLP)+ω=π 

which implies 2α–θ–θE+ω=0. 

In triangle SAL, b/sinθ=SL/sin(π/2– α)=SL/cosα. 

In triangle OAL, b/sinθE=OL/sin(π/2– α)=OL/cosα. 

Defining σS=R/SL, σO=R/OL, σOS= σS+σO=OS/(SL.OL), 

bcosα=sinθ/σS=sinθE/σO and, to first order in the angles, b=θ/σS=θE/σO. 

Replacing θE in 2α–θ–θE+ω=0, we find θ(1+σO/σS)=2α+ω 

Replacing α=λ/b= λσS/θ and defining k=(1+σO/σS)
–1=σS/σOS, 

θ=2kλσS/θ+k ω giving the second degree equation θ2–kωθ–2kλσS=0. 

Hence, 

 

 

We define <θ>=( θ++θ–)/2=½ωk and ∆θ=(θ+–θ–)/2=½k√{ω2+8λσOS}. 

 

This equation gives the two rays connecting S to O in the SOL plane. They are 

on either side of the line SL and, if one redefines θ=|θ|>0, the two solutions are 

obviously obtained from each other by simply changing the sign of ω.   

Consider now a ray emitted by the source out of the SOL plane, defined by its 

polar angle θ and its azimuth φ around SL, φ being measured from the SOL plane. In 

θ±=½{kω±√k2ω2+8kλσS} 
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Figure 23. Einstein ring geometry 
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the plane containing the ray and SL we have, for the impact M of the outgoing ray on 

the plane O┴ containing O and normal to SL  

 M=bi+1/σO w+(θ–2α)/σOi   

with i=(cosφu+sinφv) and the orthonormal reference frame (u,v,w) defined with w 

along SL and u in the SOL plane. In this plane, the coordinates of O are {ω/σO, 0, 1/σO}. 

The vector OM has therefore as coordinates in O┴: 

ξ={b+(θ–2α)/σO}cosφ–ω/σO={θ/σS+(θ–2λσS/θ)/σO}cosφ–ω/σO 

η={b+(θ–2α)/σO}sinφ={b+(θ–2λσS/θ)/σO}sinφ 

which we rewrite as ξ=r Mcosφ–ω/σO, η=r Msinφ, rM=θ/σS+(θ–2λσS/θ)/σO 

We write θ as θ=< θ>+ χ∆θ with θ=θ± for χ=±1 . For perfect alignment, ω=0, 

θ±=±θ0=±k√{2λσOS}. It is convenient to use θ/k rather than θ as variable, 

θ/k=½ω+½χ√{ω2+8λσOS}. Then, as k(1/σS+1/σO)=1/σO and σS/k=σOS, rM={( θ/k)–

2λσOS/(θ/k)}/σO. 

  

 

 

 

 

  

There are two scales for θ/k: ω and √(λσOS). It implies also two scales for rM: 

ω/σOS and √(λ/σOS). 

For perfect alignment, θ/k=χ√{2λσOS} and rM={ χ√{2λσOS}–√{2λσOS}/χ}/σO={ χ–

1/χ}√{2λσOS}/σO ,which cancels as expected for χ=±1  and θ/k=±√{2λσOS}, giving 

θE=θσO/σS=k√(2λσOS)σO/σS=√(2λ/σOS)σO and we recover the earlier relation:  

θE
2=2λ σO

2/σOS=2λ(1/dL
2)/(1/dL+1/dLS])=2 λ(1/dL

2)/(dS/[dLdLS])=2 λdLS/(dLdS). 

θ/k= ½ω+½χ√{ω2+8λσOS} 
rM ={(θ/k)–2λσOS/(θ/k)}/σO 

ξ=r Mcosφ–ω/σO 

η=r Msinφ 

(4.1) 
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The solution of Equations 1 depends on the product λσOS and not on λ and σOS 

separately. Lensing a remote quasar by a galaxy (λ~10–6, σOS~10–4) or a nearby star by a 

foreground stellar black hole (λ~1, σOS~10–10) gives the same ring.  

For χ =0, rM=(½ω–4λσOS/ω)/σO=½(ω2–8λσOS)/(σOω). 

For a source at infinity, σS=0, k=0, θ=0, θ/k=½ω+½χ√{ω2+8λσO} 

rM=(θ/k)/σO –2λ/(θ/k). 

For a lens at equal distances from the source and the observer: 

σS=σO, k=1/2, θ= ¼ω+¼χ√{ω2+8λσOS}, rM=2θ/σ–2λσ/θ. 

For a ray to be seen by the observer, two conditions must be satisfied: it must 

avoid the lens and it must hit O┴ within the angular resolution ζ of the detector. The 

first condition reads θ>σS and the second ξ2+η2<ζ2/σO
2.  

We can now draw the appearance of a ring once O, L, S, λ, ω and ζ are given: 

one simply generates rays emitted from S at angle (θ,φ) and checks whether they obey 

the above conditions. If they do, one plots a point of polar coordinates (θE=θσO/σS,φ) in 

the (u,v) plane. The generation of (θ,φ) is made with φ uniformly distributed between 0 

and 2π and θ2 uniformly distributed in an interval chosen to comfortably bracket  

[θ+,θ–] . 

For φ=0, the resolution condition reads rM–ω/σO<ζ/σO, namely (θ/k)–2λσOS/(θ/k) 

<ζ+ω, while for φ=π/2 it reads rM<ζ/σO, namely (θ/k)–2λσOS/(θ/k)<ζ. The latter 

condition may be rewritten as (θ/k)2–ζ(θ/k)–2λσOS<0. The roots are 

(θ/k)±=½{ζ±√(ζ2+8λσOS)}, and the condition is (θ/k)–<(θ/k)<(θ/k)+ 

 

 

Setting ω=0, we find χ<{ ζ+√(ζ2+8λσOS)}/√(8λσOS) and for ζ<< √(8λσOS), 

χ<ζ/√(8λσOS)+√(1+ζ2/8λσOS)<1+ ζ/√(8λσOS).  

As in that case θ/k=χ√(2λσOS), the relative ring width is ½kζ/θ. 

Similarly, setting χ=1, we find ω+√{ω2+8λσOS}< ζ+√(ζ2+8λσOS), namely ω<ζ. 

For φ=0, one has instead ω<ζ+ω, which is always satisfied. In the SOL plane, one 

ζ–√(ζ2+8λσOS)<ω+χ√{ω2+8λσOS}< ζ+√(ζ2+8λσOS) 
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keeps seeing images for large values of ω while out of the plane the image disappears 

as soon as the resolution is exceeded. 

 

4.2 Results 

We now apply the above considerations to the lensing of a remote quasar by a 

foreground elliptical galaxy, which we take as spherical. The quasar is taken as 

pointlike. Assuming a mass of 1012 solar masses for the lens, its Schwarzschild radius 

is ~3 1012km=107 ls=3 10–1 ly. We take its radius equal to 3 103 ly, meaning λ=10–4. 

Taking LS=109 ly and OL=108 ly, σO=3 10–5, σS=3 10–6, σOS=3.3 10–5 and k=1/11. As 

Equations 4.1 allow for using any common unit for θ, ω and λ, we choose to express 

them in microradians (ppm). We recall that 1 arcsec~ 5 ppm. We take ζ=0.2 ppm. In 

ppm, we have therefore σO=30, σS=3, ζ=λ=100. The result is displayed in Figures 24 

to 28 for increasing values of ω. The angular coordinates of the ring, θEcosφ  and 

θEsinφ are normalized to the size of the ring obtained in the case of perfect alignment, 

θE=√(2λ/σOS)σO ~75 ppm ~ 15 arcsec. As ω increases, the ring quickly splits in two 

parts. The part on the side opposite to the source fades away and disappears completely 

for ω= 166 ppm (last panel of Figure 28) while the part on the source side tends to the 

non-lensed image of the source.  

The focussing properties of gravitational lensing result in an important 

amplification of the light collected near perfect alignment as illustrated in Figure 29. 

They are essential in the application to microlensing (Figure 10) and are achromatic: 

the same curve is obtained when using different filters (Figure 15) and, more generally, 

radio waves are deflected the same way as visible light, X-rays or γ-rays. 



Gravitational Lensing and Einstein Rings                                             Nguyen Thi Dung 
 

 37 

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

x

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

x

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

x  
Figure 24. Rings obtained for ω=0, 5 and 7.5 ppm. 
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Figure 25. Rings obtained for ω=10, 15 and 20 ppm. 
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Figure 26. Rings obtained for ω=20, 30 and 50 ppm. 
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Figure 27. Rings obtained for ω=70, 100 and 120 ppm. 

 



Gravitational Lensing and Einstein Rings                                             Nguyen Thi Dung 
 

 41 

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

x

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

x

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

x  
Figure 28. Rings obtained for ω=140, 160 and 165 ppm. 
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Figure 29. Focussing curve showing the dependence of the 
collected light on ω. 
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5. Conclusion 

We have presented a short review of gravitational lensing and the formation of 

Einstein rings with the aim of describing the main features implied by such 

phenomena. After a short description of the occurrence of gravitational lensing in 

astrophysics, including a brief presentation of strong, weak and micro-lensing, the 

basic underlying physics, special and general relativity, have been introduced. 

Simulation codes have been written in order to illustrate the behaviour of light in a 

gravitational field. A first code has made it possible to trace rays in the vicinity of a 

massive lens, with particular emphasis on the extreme bending that occurs in the 

vicinity of a black hole. A second code has been used to illustrate the formation of an 

Einstein ring and its disappearance as the alignment deteriorates. The light 

amplification that occurs in the case of perfect alignment has been demonstrated. 

In practical cases, the non-spherical form of the lens, and to a lesser extent 

possibly of the source, result in strongly distorted rings, which may take shapes as seen 

in the Einstein Cross or other similar images. The simulation becomes in such cases 

much more complicated, each ray must be followed along its path across the complex 

gravitational field, but this complication is purely technical and of little interest from a 

physics point of view. For this reason, we restricted the present study to the case of 

spherical lenses and point like sources, which display the main features of gravitational 

lensing in a most transparent way. 
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