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Tóm tắt 
 

Luận án trình bày nghiên cứu chi tiết về hoạt động của detector 

Cherenkov VATLY, bản sao của một trong 1660 detector mặt đất tại Đài thiên 

văn Pierre Auger. Đề tài nghiên cứu tập trung vào sự đáp ứng của detector đối 

với các tín hiệu nhỏ tới một phần mười tín hiệu được tạo ra bởi hạt muon đi 

xuyên detector theo phương thẳng đứng (VEM ), mở rộng vùng hoạt động của 

detector lên đến 10
4
. Nghiên cứu sử dụng phương pháp tìm kiếm thực nghiệm sự 

phân rã của hạt muon dừng trong khối nước của detector, trong đó chỉ có một vài 

phần trăm thông lượng hạt là phát ra đủ ánh sáng Cherenkov để có thể được ghi 

nhận trước khi bị dừng hoàn toàn. Sau đó, mỗi muon phân rã thành một electron 

(hay positron) có năng lượng trung bình khoảng 35 MeV. Thí nghiệm được thiết 

kế phù hợp cho việc phát hiện các tín hiệu được tạo ra bởi cả muon dừng và 

electron được sinh ra. Những cặp tín hiệu như vậy đã được phát hiện trong các 

điều kiện thí nghiệm khác nhau, cả biên độ tín hiệu lẫn khoảng thời gian giữa hai 

tín hiệu cùng được xác định. Một hodoscope nhấp nháy được đặt trên và dưới 

detector Cherenkov để chuẩn thang đo cho hệ thống. Một số lượng lớn mẫu số 

liệu đã được thu thập cho thấy bằng chứng rất rõ ràng về sự phân rã muon với 

phổ thời gian như đã dự kiến. Biên độ tín hiệu của hạt electron được thấy chỉ 

bằng một phần của một VEM , và chỉ phần đuôi phổ phân bố là được ghi nhận. 

Phân bố của muon đòi hỏi phải có thêm sự đóng góp của thành phần mềm 

electron/photon, xuất hiện đặc biệt quan trọng trong thí nghiệm này do detector 

Cherenkov có thể tích ghi đo lớn. Một mô hình để tìm hiểu về cơ chế vật lý và 

tiến trình ghi nhận đã được xây dựng giải thích rõ ràng phổ phân bố điện tích và 

thời gian đã thu được. Nó cũng cho phép đánh giá số quang điện tử trên một 

VEM là 13,0 ± 0,9 và năng lượng trung bình của muon là 4,0 ± 0,4 GeV. Hiệu 

suất ghi nhận hạt electron ngụ ý một kích thước mưa rào electron hiệu dụng là 

~36 ± 6 cm, bằng kích thước của chiều dài bức xạ trong môi trường nước. Điểm 

cuối của phổ phân bố điện tích electron, tương ứng với động năng 53 MeV, được 

đo là Eend = 0,275 ± 0,018 VEM phù hợp với dự kiến. Tốc độ sự kiện được đo 

phù hợp với dự kiến. Tốc độ xuất hiện sự kiện muon kép trong cùng một mưa rào 

là 7,0 ± 0,5 Hz. Một chương trình mô phỏng cơ chế thu nhận ánh sáng đã được 
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viết thể hiện sự phụ thuộc của các góc tới nhỏ vào hiệu suất ghi nhận, điều này 

phù hợp với quan sát. Ngoài ra, nghiên cứu này đã đóng góp những thông tin hữu 

ích về các hoạt động chi tiết của những detector Cherenkov lớn nói chung, và của 

mảng detector mặt đất tại Đài thiên văn Pierre nói riêng. Nghiên cứu đã góp phần 

vào việc đào tạo sinh viên ngành vật lí hạt thực nghiệm và vật lí hạt nhân bằng 

cách cung cấp cho họ một công cụ đặc biệt thích hợp với công việc. 
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Abstract 

 

A detailed study of the performance of the VATLY Cherenkov detector, a 

replica of one of the 1660 detectors of the ground array of the Pierre Auger 

Observatory, is presented. The emphasis is on the response to low signals down 

to a tenth of the signal produced by a vertical feed-through muon (VEM), 

implying a dynamical range in excess of 10
4
. The method is to look for decays of 

muons stopping in the water volume of the detector, of which only a few produce 

sufficient Cherenkov light to be detected before stopping. The subsequent muon 

decay produces an electron (or positron) that carries an average energy of only 

~35 MeV. The experimental set-up detects the signals produced by both the 

stopping muon and the decay electron. Such pairs have been detected under 

various experimental conditions and the amplitude of the electron signal has been 

recorded together with the time separating the two signals. A scintillator 

hodoscope that brackets the Cherenkov detector from above and below provides 

a precise calibration. A large sample of data has been collected that give very 

clear evidence for muon decays with the expected time dependence. The 

amplitude of the electron signal is observed at the level of a fraction of a VEM, 

and only the upper part of its distribution can be detected. The muon distribution 

requires the additional contribution of a soft electron/photon component, which 

appears particularly important in the present experimental set-up due to the large 

sensitive volume of the Cherenkov detector. A model of the physics mechanism 

at play and of the detection process has been constructed, giving good 

descriptions of the measured charge and time distributions. This allows for 

obtaining useful evaluations of the number of photoelectrons per VEM, 13.0±0.9, 

and of the mean muon energy, 4.0 ±0.4 GeV. The detection efficiency of 

electrons implies an effective electron shower size, ~36±6 cm, at the scale of the 

radiation length in water. The end point of the electron charge distribution, 

corresponding to a kinetic energy of 53 MeV, is measured to be 

Eend=0.275±0.018 VEM in agreement with expectation. The measured event 

rates are found in good agreement with predictions and the occurrence of muon 

pairs from a same shower is measured with a rate of 7.0±0.5 Hz. A simulation of 
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the light collection mechanism suggests the presence of a small zenith angle 

dependence of its efficiency, which is found consistent with observation. At the 

same time as this study contributes useful information to the detailed 

performance of large Cherenkov detectors in general, and particularly of the 

ground array of the Pierre Auger Observatory, it contributes to the training of 

students of experimental particle and nuclear physics by making available to 

them a tool particularly well suited to the task.  
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1. Introduction 

 

1.1 Generalities on cosmic rays 

Cosmic rays [1] are ionised nuclei that travel in space up to extremely 

high energies of the order of 10
20 

eV=16 Joules. There are very few of them but 

their contribution to the energy density of the Universe is similar to that of the 

Cosmic Microwave Background or of the visible light or of the magnetic fields, 

namely ~1 eV/cm
3
. Their power law energy spectrum (Figure 1.1), spanning 32 

decades (12 decades in energy), is of the approximate form E
–2.7

.    

 The Pierre Auger Observatory (PAO) [2] studies the high energy part of 

the spectrum, where an extragalactic component can be found. The water 

Cherenkov detector of the Vietnam Auger Training LaboratorY (VATLY), 

which is being studied in the present 

thesis, is a replica of those used in the 

PAO. Indeed VATLY is associated with 

the PAO and much of its research is 

related to PAO data. However, the 

present study uses data collected in 

Hanoi, at sea level, which correspond to 

the low energy part of the spectrum.  Its 

main aim is to study the detector, its 

properties and its response to various 

sources, in particular to low signals. 

Because of the close relation 

between VATLY and the PAO, we 

devote the next sub-section (1.2) to a 

brief description of the PAO and of the 

physics questions that it addresses. The main characteristics of low energy 

cosmic rays, as used here, are briefly reviewed in sub-section 1.3 and the water 

Cherenkov detectors used in both VATLY and the PAO are described in sub-

section 1.4. Sub-section 1.5 introduces the present work.     

Figure 1.1 The cosmic ray energy 

spectrum displaying its main 

features. 
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 At lower energies, cosmic rays are found to be ionised nuclei with relative 

abundances similar to those measured on average in the Universe: protons 

dominate, followed by helium nuclei and by a spectrum of strongly bound light 

nuclei, mostly iron. Spallation reactions occurring in the interactions of cosmic 

rays with interstellar matter tend to fill the valleys of the original spectrum.  

Most of the lower energy cosmic rays are galactic and have their sources 

in the shells of young Super Nova Remnants (SNR) in the Milky Way, the 

acceleration mechanism being well described by diffusive shock acceleration 

across the shock front [3]. This is a collisionless process, with magnetic fields 

causing the random walk progression of the particle being accelerated, implying 

many successive traversals of the shock front. Each shock traversal increases the 

particle energy by a constant fraction, proportional to the relative velocity of the 

upstream medium with respect to the 

downstream one. Turbulences around the 

shock result in strong magnetic field 

amplification increasing significantly the 

efficiency of the acceleration process. 

Diffusive shock acceleration has the 

property to generate a power energy 

spectrum with an index between 2 and 3.  

When a primary cosmic ray enters 

the Earth atmosphere, it interacts with it 

and produces a large number of mesons, 

which, in turn, interact with the 

atmosphere, and so on until the primary 

energy is exhausted in ionisation losses. The result is a cascade of interactions 

(Figure 1.2) producing an extensive air shower (EAS). Its longitudinal profile 

evolves slowly with energy, in proportion to its logarithm, while its energy 

content, in the form of ionisation losses, is proportional to energy. 

A major fraction of the mesons produced are pions, either neutral or 

charged. The former decay promptly into two photons and are therefore lost for 

Figure 1.2 Development of an extensive 

air shower in the atmosphere. 

vertical shower 
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the development of the hadronic cascade. They generate instead electromagnetic 

showers consisting mostly of electrons, positrons and photons, developing 

longitudinally at the scale of a radiation length, twice as short as the interaction 

length which governs the development of the hadronic cascade. The charged 

pions have a chance to decay into a muon-neutrino pair if their decay length, 

56 m/GeV, is short enough in comparison with the interaction length. As a result, 

the muon to electron/photon ratio increases with depth. 

Indeed, at sea level, most cosmic rays are muons with momenta in the few 

GeV/c range. Their rate is of the order of 1/cm
2
/mn and depends on latitude. The 

reason is the shielding action of the geomagnetic field: when a low momentum 

cosmic ray aims at the Earth, it will be bent out by this field and will not reach 

the atmosphere. These results in a momentum cut-off called rigidity cut-off. It is 

of the order of 4 GeV/c in Europe and Northern America. If the geomagnetic 

field were a perfect south-north dipole, it would be zero at the poles and maximal 

at the equator. In fact it is maximal in a region that covers from Sri Lanka to 

Vietnam, where it reaches 17 GeV/c. Near the poles, it is indeed very low and 

allows solar wind particles to enter the atmosphere, causing auroras. The 

geomagnetic field has only little effect on the secondary shower particles: it acts 

on the primary cosmic ray. On ground, it affects mostly the cosmic ray flux, not 

much the energy spectrum.  

 

1.2 The Pierre Auger Observatory 

The Pierre Auger Observatory (PAO) is a hybrid detector covering 

3’000 km
2
 in the Argentinean Pampas where showers are detected from the 

fluorescence they produce in the atmosphere and by their impact on a ground 

detector array (Figure 1.3). Construction of the baseline design was completed in 

June 2008. With stable data taking starting in January 2004, the world's largest 

data set of cosmic ray observations had been already collected during the 

construction phase of the Observatory.  
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Around 30 EeV, the UHECR flux is about 0.2 km
−2

century
−1

sr
−1

EeV
−1

 

and drops rapidly at higher energies, requiring a very large coverage; but the 

showers contain billions of particles when reaching ground and cover several 

square kilometres, allowing for a thin sampling. Only 5 ppm of the PAO area are 

covered by detectors. These include 1’660 Cherenkov detectors making up the 

surface detector (SD, Figure 1.4), and 24 fluorescence telescopes making up the 

fluorescence detector (FD, Figure 1.5). Data are transferred by radio to an 

acquisition centre which filters them and sends them out for subsequent 

dispatching to the laboratories associated with this research, including VATLY in 

Ha Noi. 

The SD samples the footprint of the showers on ground. It is made of a 

triangular array of water Cherenkov counters having a mesh size of 1.5 km 

located on flat ground at an altitude of 1’400 metres above sea level. The 

VATLY Cherenkov detector is a replica of one of these.  

 

Figure 1.3 Left: Plan view of the PAO, covering some 60×50 km
2
. SD tanks are shown 

as dots and the lines of sight of the 24 FD telescopes as green lines. 

Right: The first four-fold hybrid event (when the array was not yet complete). 



 14 

 

 

 

 

When reaching ground, showers consist essentially of low energy 

electrons, positrons and photons as well as of muons having a kinetic energy of a 

few GeV. When shower particles are detected in at least three detectors, the 

measurement of the time at which they are hit allows for a precise measurement 

of the azimuth and zenith angle of the shower axis (accounting for the slight 

curvature of the shower front). The energy measurement implies the construction 

UV-Filter  

300-400nm 
 

camera 

440 PMTs 

11 m2 

mirror 

Figure 1.5 Left: A fluorescence station: schematic view (above) and its photograph 

(below). Right: Photograph of an eye. 
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Figure 1.4 Picture of a Cherenkov tank on site (left panel) and exploded view (right 

panel). 
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of a standard function, called lateral distribution function (LDF), which gives the 

average signal measured in a Cherenkov detector as a function of shower energy, 

distance to the shower axis and zenith angle. The energy is essentially obtained 

from the normalization of the measured signals to the standard LDF. The final 

energy scale is calibrated using FD data in hybrid events as illustrated in Figure 

1.6. Figure 1.7 summarizes the information gathered by the SD, showing both the 

footprint of the shower on ground and the fit to the LDF. 

 

 

 

Three major questions are being addressed by the PAO: Which is the 

energy distribution of UHECRs? Where do they come from? Which is their 

nature?  

 The PAO has already given two particularly important answers to these 

questions. One is the evidence for the so-called GZK cut-off [4], the other is the 

observation of a correlation between the direction of arrival of the highest energy 

UHECRs and nearby galaxies.  

Figure 1.6 Hybrid events. Left: Correlation between the decimal logarithms of the 

energy measured in the FD (abscissa) and in the SD (ordinate). Right: Fractional 

difference between the FD and SD energies, EFD and E. 
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The Greisen-Zatsepin-Kuzmin (GZK) cut-off results from the interactions 

of cosmic rays with the cosmic microwave background (CMB), producing either 

electron-positron pairs or new mesons. Of these, the pion photoproduction 

threshold is of particular importance. Until recently, the existence of such a cut-

off was uncertain but the Pierre Auger Observatory has given clear evidence for 

it (Figure 1.8). With a typical interaction length in the few 10 Mpc scale, cosmic 

rays coming from larger distances cannot make it to the Earth without 

interacting, and therefore loose energy: their flux is significantly damped and 

only nearby (<100 Mpc) sources can contribute to the UHECR spectrum.  

The large UHECR statistics accessible to the PAO has revealed a 

correlation with extragalactic counterparts. Of relevance to this study is the fact 

that the nearby universe, in which detected UHECRs are confined by the GZK 

cut-off, is highly inhomogeneous. Selecting UHECR having an energy in excess 

of 6×10
19 

eV and comparing the direction in the sky where they come from with 

a catalogue of nearby (< 75 Mpc) galaxies, reveals a positive, but relatively weak 

correlation. 

Figure 1.7 SD data of a typical event of about 5x10
18

 eV. Top left: Top view of 

triggered tanks. Lower left: LDF fit. Right: FADC traces from four detectors.  
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Of relevance to this result is the fact that, at the highest energies, the 

nature of the primaries drifts from light (mostly protons) to heavy (mostly Fe) 

nuclei [5], the latter being too strongly bent in the interstellar magnetic fields for 

the showers that they produce to point back to their sources. The main difference 

between showers induced by protons and by iron nuclei results from the very 

Figure 1.8 Left: Fractional difference between the combined energy spectrum of the 

PAO and a spectrum with an index of 2.6. Data from HiRes are shown for comparison. 

Right: Combined energy spectrum compared with several astrophysical models 

including a pure composition of protons (red lines) or iron (blue line). 

Figure 1.9 Energy dependence of <Xmax> and Rms(Xmax) compared with the predictions 

of air shower simulations using different hadronic interaction models. 
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different natures of their first interaction in the upper atmosphere. The proton 

shower starts to develop on average after having crossed one interaction length 

and the depth of its starting point fluctuates with a variance also equal to one 

interaction length. The iron shower may be seen as the superposition of 56 proton 

showers (protons and neutrons are equivalent at such energies), each carrying 

1/56 of the nucleus energy. As a result it starts much earlier, and the location of 

its starting point fluctuates much less than in the proton case [6]. This is indeed 

what is observed from the FD measurement of the shower longitudinal profiles 

(Figure 1.9). Yet, the mass composition of UHECR primaries remains an open 

question requiring more data to be collected. 

 

1.3 Cosmic rays in Hanoi 

Hanoi is located 12 m above sea level at 21
o
 latitude N and 106

o
 longitude 

E where the geomagnetic rigidity cut-off reaches its world maximal value of 

~17 GV. The cosmic ray flux has been measured at VATLY between 2001 and 

2003 using scintillator detectors. Three successive measurements have been 

done: first of the vertical cosmic muon flux [7], second of the zenith angle 

distribution [8] and third of the east-west asymmetry [9]. We recall the main 

results in the present sub-section. 

At sea level, the cosmic ray flux of charged particles is dominated by 

muons having a steep momentum spectrum with an average momentum of the 

order of 4 GeV/c; the main contamination is a ~3% proton component and very 

soft electrons and positrons. Neutral particles include slow neutrons and soft 

photons.  

The vertical muon flux at zero zenith angle and integrated over all 

momenta was measured to be 71.5±2.8 m
–2

sr
–1

s
–1 

in good agreement with a 

model description of the muon flux over the whole planet [10]. The data were 

taken during a period of low Sun activity; as we are now at maximal activity, 

fluxes lower by a few percent might be expected. 
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The zenith angle (θ) distribution of the flux is well described by a form  

(Φ0 – asin
2θ)cos

2θ with Φ0 = 72.0±1.6 m
–2

sr
–1

s
–1

 and a=7.8±0.8 m
–2

sr
–1

s
–1

 

again in excellent agreement with the model of Reference 10. As primary cosmic 

rays and atmospheric nuclei are both positively charged, a charge asymmetry 

exists among the constituents of atmospheric cosmic showers and therefore 

among the muons into which they may decay. The magnetic field being oriented 

toward south, it bends positive primary particles eastward, resulting in an east-

west asymmetry of the flux that has been measured as a function of zenith angle 

using the telescope shown in Figure 1.10. The amplitude of the asymmetry is 

Figure 1.11 East-west asymmetry measured in Hanoi [9] at θ = 50
o
 (upper pannel) and 

θ = 65
o
 (lower pannel). 

Figure 1.10 Schematic view of the telescope used in Hanoi to measure the angular 

dependence of the cosmic ray flux [8, 9]. 
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measured to increase from zero at θ=0
o
 to nearly 20% at θ=60

o
. The resulting 

azimuthal oscillations are displayed in Figure 1.11 for θ=50
o 

and θ=65
o
 

respectively.  

 

1.4 The VATLY Cherenkov detectors 

A set of four Cherenkov detectors is installed on the roof of the VATLY 

Laboratory. Their design and performance have been described in detail in 

Reference 11. One of these, referred to as the main tank in the present work, is a 

replica of a standard PAO tank (of which 1’660 are operated in the PAO array in 

Argentina). As it is central to the present work, we briefly recall the main results 

that have been previously obtained.  

 

 

 

The main tank has been constructed in Hanoi with the same geometry as 

that of the PAO tanks [12]: a cylinder of 3.6 m diameter (about 10 m
2
 in area) 

Figure 1.12 Geometry used for the study of the main tank response as a function of 

incidence angle [13]. 
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filled with clean water up to 1.2 m height. At variance with the PAO tank, which 

is made of resin, the VATLY tank is made of stainless steel. The water volume is 

seen by three down-looking PMTs at 120
o
 azimuthal intervals on a radius of 

1.25 m. In a first phase, the tank was equipped with old 8” diameter PMTs (EMI 

D 340A), the inner walls were simply painted white and a rudimentary sand 

based filter was used to purify city water. Early studies [13] using a fragmented 

hodoscope trigger (Figure 1.12) have given evidence for a good proportionality 

of the response to track length, but the number of photo-electrons per Vertical 

Equivalent Muon (VEM) was ~10 times smaller than in the PAO [13]. The main 

tank was completely refurbished in 2006 [14] by replacing the old PMTs by new 

9” PMTs from the PAO (Photonis XP 1805) and by coating the internal walls 

with aluminized mylar. An early attempt to use a Tyvek liner, as is done in the 

PAO, failed because the water was not sufficiently filtered and iron oxide 

deposited on the bottom of the liner and could not be washed away without 

damaging it. As a consequence, the VATLY PMTs are directly in contact with 

water, at variance with the PAO design where they see the water volume through 

a transparent window of the liner. The refurbishing operation included a 

complete redesign of the filtering station, with a maximal grain size of 1 µm 

compared with 10 µm in the first phase; its performance is satisfactory and the 

water quality is stable, although significantly inferior to that of the PAO. As 

shown in the next section (2.4.3) the number of photo-electrons per VEM is now 

~2.3 times less than in the PAO, a factor more than 4 times larger than in the first 

phase. Photographs of the VATLY Cherenkov detectors are shown in Figure 1.13 

and a plan view of the installation in Figure 1.14. 

The front end preamplification of the PMT signals and the HV supplies 

and dividers use the same electronics as in the PAO but the data acquisition 

system differs: it is based on the NIM standard for the fast trigger logic and on 

CAMAC for data recording, with simple Analogue-to-digital (ADC) and Time-

to-digital (TDC) converters rather than Flash ADCs as used in the PAO. The 

PMT signals are fed to the electronics via 20 m 50 Ω coaxial cables through a 

hole in the roof rather than being dispatched by radio as in the PAO. 
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Figure 1.14 Plan view of the VATLY Cherenkov counters including three small 

(3’000 l) tanks used as a trigger and the large (12’000 l) main tank. All distances are 

measured in centimeters. 

 

Three satellite tanks have been used to provide an unbiased trigger for the 

study of the main tank. They give a coincidence rate of 0.1 Hz with an effective 

acceptance of 22 m
2
.  The trigger selects vertical showers over an effective solid 

angle of the order of 0.4 sr. Such showers have energies in the 200 GeV range 

and a few permil probability of surviving at sea level with sufficient energy 
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Figure 1.13 Left: The main Cherenkov detector is seen surrounded by two of the three 

smaller ones, one of which is hidden behind the green tower. Right: Addition of a 

scintillator hodoscope to the main Cherenkov detector; the lower part of the hodoscope 

is located in the counting room below the roof. 
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density to be detected. Their cores have typical particle densities of 2.5 to 3 m
–2

 

and typical radii of 2 m.   

 

1.5 Overview of the present work 

The present thesis reports a number of measurements that have been 

performed with the aim of gaining detailed information on the performance of 

the main VATLY tank and learning about important features of the surface 

detectors of the PAO concerning their response to low signals. 

Section 2 reports on the response of the VATLY Cherenkov detector to 

feed-through muons. We have assembled for this purpose a trigger scintillation 

hodoscope, the design and performance of which are described in some detail. 

The analysis of the Cherenkov data includes the selection of a clean sample of 

relativistic feed-through muons and provides a calibration of the charge scale of 

the detector in terms of Vertical Equivalent Muons (VEM). 

 Section 3 is an introduction to the problem of detecting electrons from the 

decay of muons stopping in the water volume. The interest of this measurement 

is to test the performance of the main tank in the region of low amplitude signals, 

as electron signals are expected to be typically an order of magnitude smaller 

than feed-through muon signals. A simulation of the decay and detection 

processes allows for a general understanding of the problem and for estimates of 

the rates and amplitudes that can be expected.  

 Section 4 is an introduction to the measurement of auto-correlation 

distributions. Such distributions are one of the basic tools used in the present 

work to disentangle a possible decay electron signal from a possible multimuon 

signal (when two muons, from a same or different showers, are detected in the 

main tank). An analytical description of the distribution is worked out and a 

numerical simulation is presented that shows the separate effects of multimuons 

and decay electrons, at the same time providing guidance on how to disentangle 

them from real data.  
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Section 5 describes the experimental set-up being used for auto-

correlation measurements, including a sophisticated electronics arrangement 

allowing to deal with high single rates, namely with low signal thresholds as 

required for electron detection. The auto-correlation distribution proper and the 

charge measurement are both described in some detail, together with comments 

on their performance.  

Section 6 is dedicated to the analysis of the data that have been collected 

in several experimental conditions, including both auto-correlation and charge 

distributions. The results are described and interpreted in Section 7. Section 8 

summarizes the main findings and concludes. 
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2. Response of the VATLY Cherenkov detector to feed-

through muons 

 

In order to obtain a calibration of the response of the VATLY Cherenkov 

detector, we use as reference vertical feed-through muons impacting in the 

central part of the tank. The same reference is used by the Pierre Auger 

Observatory (PAO): one speaks of Vertical Equivalent Muons (VEM) which are 

taken as charge units in all PAO measurements [15]. As atmospheric muons have 

momenta of the order of 4 GeV/c, most of them are relativistic (the muon mass 

being only 106 MeV/c
2
) and therefore minimum ionizing: in their vast majority, 

they deposit ~2 MeV per centimetre of water irrespective of their momentum (to 

within a negligible logarithmic increase with energy). We have designed and 

constructed a scintillator hodoscope [16] bracketing the VATLY Cherenkov 

detector from above and below to provide a trigger on such relativistic feed-

through muons. The requirement of a coincidence between the upper and lower 

scintillators guarantees that the muon has fed through not only the Cherenkov 

tank but also the laboratory roof and the lower scintillators. Moreover, a 

measurement of the time of flight between the upper and lower scintillators 

allows for rejecting the few lower momentum muons that just make it through 

the tank and roof and stop in the lower scintillators. The present section describes 

the design, construction, assembly and running-in of the scintillator hodoscope 

and its use in the calibration of the Cherenkov detector.  

 

2.1 The trigger hodoscope 

2.1.1 Description 

The trigger hodoscope includes two scintillator plates on top of the 

Cherenkov detector and two below. Figure 2.1 shows the geometry of the 

ensemble. The upper set is made of two 80×40 cm
2
 scintillator plates, 3 cm thick, 

glued to 40×40 cm
2
 lucite plates. The lower set is made of a 80×40 cm

2
 

scintillator plate which overlaps a 120×40 cm
2
 scintillator plate as above. Each 
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plate is viewed by a 2” photomultiplier tube (PMT) via a 15 cm long cylindrical 

lucite light guide. The PMTs of a same pair are located at opposite ends in order 

to avoid detecting muons that cross the lucite light guides where they would 

produce Cherenkov light. All plastic scintillators are wrapped in aluminium and 

black polyethylene sheets kept together with black scotch tape. The upper plates 

are inserted in a light-tight wooden box that fits them tightly. They are protected 

from rain by a small steel roof (Figure 1.13, Right). The lower pair is located 

inside the laboratory under the roof.  

 

Figure 2.1 Schematic drawing of the set up (all distances are measured in cm). 

 
 

Figure 2.2 Electronic arrangement used to set up high voltages and delays. 

 

2.1.2 High voltages and delays  

The PMT high voltages and the timing of their signals have been adjusted 

using a rudimentary electronic arrangement (Figure 2.2). Each PMT signal is sent 

to a fast discriminator that produces a NIM pulse. Discriminators are set at a 

width of 15 ns and a threshold of 17 mV. Depending on the measurement to be 
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performed, a number (2, 3 or 4) of the above NIM signals are counted in 

coincidence using a four-fold coincidence unit, the output of which is sent to a 

scaler. Most atmospheric muons feeding through the Cherenkov counter are 

relativistic; hence the signals in the upper and lower pairs are separated by about 

11 ns. The muon energy deposited in each plate by minimum ionizing particles is 

∼6 MeV/c. The dependence of the four-fold coincidence rate on each of the high 

voltages and each of the delays are displayed in Figures 2.3 and 2.4 respectively 

together with fits to simple analytical forms used to decide on the final settings, 

which are listed in Table 2.1. 

 

Figure 2.3 Dependence of the 4-fold coincidence rate on PMT high voltages 

 

Figure 2.4 Dependence of the 4-fold coincidence rate on delays 
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Table 2.1 PMT high voltages and delays.  

 

 PMT1 PMT2 PMT3 PMT4 

V(V) 1765 1900 1790 1910 

t(ns) 7 5 18 19 

 

Using the final voltage and delay values listed in Table 2.1 and increasing 

the discriminator widths from 15 ns to 25 ns, the 3-fold and 4-fold coincidence 

rates are listed in Table 2.2 in units of (600 s)
–1

.  

 

Table 2.2 Coincidence rates 

 

Coincidence Rate (600 s)
–1 

123 340 ± 18 

124 470 ± 22 

134 526 ± 23 

234 466 ± 22 

1234 287 ± 17 

12 33110 ± 182 

34 31960 ± 179 

 

 

2.1.3 Rate 

The 4-fold rate is 0.48 ± 0.03 Hz.  

To a very good approximation, the triggering particles are vertical; the 

detector area is 0.80×0.40=0.32 m
2
 and its solid angle is 0.80×0.40/3.7

2
=0.023 sr. 

Hence a detected flux Φdet=0.48/0.023/0.32=65.0±3.8 m
-2

sr
-1

s
-1

. A muon giving a   

4-fold coincidence has to go through 185 g/cm
2
 of material [7] between the two 

scintillator sets of the hodoscope (namely a 12000 l water tank, the laboratory 

roof and two other scintillator plates), corresponding to a 500 MeV/c momentum 

cut-off for muons while the muon flux at sea level (Hanoi) has a mean energy of 

4 GeV. The correction for the sum of absorptions is done by the extrapolation of 

the above result using the data of Reference 7. Therefore the flux incident on the 
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upper scintillators is Φ =70.3±4.1 m
-2

sr
-1

s
-1

 which is less than half a standard 

deviation away from the Reference 7 result.    

 

2.2 Electronics 

The scintillator hodoscope described above is used as a trigger to calibrate 

the response of the Cherenkov tank. The PMT high voltages have been increased 

by 100 V with respect to the values listed in the preceding section in order to be 

safely on plateau: they are set at 1’865 V, 2’000 V, 1’970 V and 2’010 V 

respectively. Discriminator widths have been set at 25 ns and thresholds at 

17 mV. Each of the four hodoscope signals is resistively split into two equal 

pulses. One of these is sent after some delay to an Analogue-to-Digital Converter 

(ADC1) for measuring its charge. The other is sent to a discriminator that 

produces a NIM pulse used for building up the trigger and, after some delay, for 

stopping the Time-to-Digital Converters (TDC) that are started by the trigger 

pulse. A Timing-Unit (TU) is used to generate a dead time of 1 ms at the level of 

the trigger coincidence. In order to measure ADC pedestals, another TU is used 

as a clock giving a trigger with a frequency of the order of 1 Hz and a pattern 

unit (PU) tells which trigger (muon or pedestal clock) was active. The three 

Cherenkov dynode signals are amplified by a factor 10 and sent to ADC2. The 

final trigger pulse is used to open the ADC gates; it is broadened to 70 ns for 

ADC1 and to 150 ns for ADC2. A diagram of the trigger electronics is shown in 

Figure 2.5.  
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Figure 2.5 Schematic trigger electronic diagram used for the VEM measurement. 
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2.3. Analysis of hodoscope data 

2.3.1 Charge distributions 

ADC pedestals, recorded every second or so, are averaged over 250 

successive clock triggers and used online for monitoring purpose. Typical 

distributions of these averages are displayed in Figure 2.6. The pedestals are 

usually quite stable but small variations are occasionally observed, usually 

associated with a change of input impedance of a contact in one of the connectors 

along the line bringing the signal from the PMT to the ADC. Moreover, an 

important VHF pick up is present on all signals, having its source in the 

television and mobile telephone emissions in the neighbourhood. But once they 

are averaged over the 70 ns fixed width ADC gate, their contribution is small 

enough not to significantly disturb the quality of the charge measurements. 

Typical distributions of the pedestals around their means are shown in 

Figure 2.7. They have a typical rms value of 1 ADC channel. For convenience, 

for each individual run, the PMT signals are normalized off-line to a same 

average value of 100 ADC channels. Typical charge distributions are shown in 

Figure 2.8. Qualitatively, the shapes are Landau distributions typical of 

ionization losses in 3 cm of plastic scintillator. The rms to mean ratios are 69%, 

57%, 64% and 64% for PMTs 1 to 4 respectively. Rejecting charges in excess of 

100 ADC channels in one of the scintillator of a pair results in an only 5% 

decrease of the mean charge measured in the other scintillator and conversely 

when rejecting charges not exceeding 100 ADC channels. Such a positive 

correlation is expected if both scintillators of a pair are giving similar charge 

measurements for a given particle. 

However, because of light absorption in the scintillator, one also expects 

an impact close to PMT1, and therefore far from PMT2, to give a larger charge in 

PMT1 than in PMT2. This effect would give a negative correlation which – if 

present – is hidden under the positive correlation mentioned earlier. In order to 

give evidence for it we can use the time information: an impact close to the PMT 

will give an earlier signal than an impact far from the PMT. Typically the 
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velocity of light in the scintillator is 3/4 of that in air and, because of reflections, 

light travels a factor 2  more than the actual distance between impact point and 

PMT. The maximum time difference, corresponding to 80 cm, is 

80× 2 ×1.33/30 = 5 ns. 

 

 

Figure 2.6 Typical time distributions of the hodoscope pedestals averaged over 250 

successive clock triggers. Different colours (green, blue, red and black) correspond to 

PMTs 1, 2, 3 and 4 respectively. The figure covers a full run of 21 hours.  
 

 

 

Figure 2.7 Distributions of the hodoscope pedestals around their averaged values (from 

left to right and top to bottom, PMTs 1 to 4).   
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Figure 2.8 Typical charge distributions measured in the four hodoscope counters. 

 

Figure 2.9 shows the correlation between the time difference t2−t1 in 

ordinate (7 TDC bins per ns) and the charge asymmetry (q2−q1)/(q2+q1) in 

abscissa. Here, for both the upper and lower pair, the correlation is clearly 

negative as expected. Another effect contributing to it is time slewing: when a 

charge is small, the signal reaches the fixed discriminator level later than when a 

charge is large. Namely late times are associated with small charges both because 

of that latter effect (called time slewing) and because the light absorption in the 

scintillator is larger.  

 

Figure 2.9 Correlation between the time difference (ordinate, in bins of 0.143 ns) and 

the charge asymmetry (abscissa) of the signals of a same pair. 
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Retaining as charge measurement the mean of the two charges of a pair 

and as time measurement the mean of the two times, these effects compensate 

and there is no need to correct for them. Typical distributions of the mean upper 

and lower charges are shown in Figure 2.10. The lines are the result of fits to a 

Landau distribution of the form dN/dq=S0 exp{− (y+e
− y

)/2} with y=(q−q0 )/∆q. 

The values taken by q0 and ∆q are respectively 73 and 21 ADC channels for the 

upper pair and 74 and 20 ADC channels for the lower pair. The uncertainties on 

these parameters, as obtained from the fit, are respectively 0.4 and 0.2 channels 

in both cases.   

 

 
 

Figure 2.10 Typical upper and lower mean charge distributions and the corresponding 

Landau fits. 

 

2.3.2 Time of flight 

Figure 2.11 shows typical distributions of the arrival times of the signals 

in each of the hodoscope counters. The latest of the four signals defines the 

timing of the coincidence and, therefore, that of the TDC start: it is recorded at a 

fixed value in the associated TDC. As any other value is lower, a spike appears at 

the upper ends of the TDC distributions. 

Figure 2.12 shows the distribution of the time of flight ∆t=t3+t4–t1–t2. The 

distance between the two layers of the hodoscope is 3.62 m meaning a time of 

flight of about 11 ns for relativistic particles (corresponding to the zero of the 
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distributions in the figure). A muon having β=0.964, meaning γ=(1–β2
)
–½

=3.76 

and 
 
a momentum of 386 MeV/c, just makes it through the hodoscope. It gives a 

time of flight only 0.4 ns lower than relativistic muons, meaning 3 TDC bins. We 

expect relativistic feed-through muons to give lower time of flights and minimum 

ionizing charges; while low energy muons significantly slowing down in water 

should give larger times of flight and a higher down-to-up charge asymmetry. 

The correlation between these two quantities is shown in Figure 2.13. 

 

Figure 2.11 Time distributions measured in the hodoscope counters (7 TDC bins =1ns). 
 

 

 

Figure 2.12 Typical time of flight distribution between the upper and lower hodoscope 

pairs (7 TDC bins=1 ns). 
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2.3.3 Event selection 

The data displayed in Figure 2.13 do not show any sign of the positive 

correlation mentioned above: the effect is too small to be visible and time of 

flight cannot be used efficiently as a selection criterion. In order to improve the 

quality of the charge and time measurements in the hodoscope, we retain only 

events where each of the four charge measurements and each of the four time 

measurements obey the following cuts: charges should be between 30 and 223 

ADC channels; times should be between the spike and 100 TDC channels below 

the spike. Together, these cuts remove 45.6% of the triggers. The time of flight 

distribution (Figure 2.14, left) is now 36% narrower (rms of 19.7 channels, 

meaning 2.8 ns). The mean charge distribution averaged over the four counters 

(Figure 2.14, right) is also significantly narrower. While the rms to width ratio 

was 50% in each of the upper and lower pairs before cuts (Figure 2.10), it is now 

23% compared with 50/ 2 =35%.  

However, good Landau fits can no longer be obtained, giving evidence for 

a spurious broadening of the signal. A good fit is obtained by smearing the 

Landau distribution (q0=86 and ∆q=7) with a Gaussian having an rms of 18 

(units being ADC channels, namely ~1% of the mean) meaning relative 

contributions to the width of typically 14% of physics origin and 18% of 

instrumental origin. 

 

 

 

Figure 2.13 Typical correlation between time of flight (abscissa) and mean charge 

asymmetry (ordinate). The right panel shows the central part of the left panel. 
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Figure 2.14 Time of flight (left panel) and mean charge (right panel) distributions after 

application of the cuts (see text). Fits to the charge distribution are pure Landau (blue), 

pure Gaussian (green) and smeared Landau (red).  

 

2.3.4 Stability  

In the preceding sections, a particular run was chosen as typical 

illustration. In the present section we comment on the stability of the hodoscope 

data. Table 2.3 lists the values taken over 10 runs by the following parameters 

after application of the cuts: the mean and rms values of the time of flight, the 

mean and rms values of the mean charge, the four PMT pedestals and the four 

PMT normalization constants. 

 

Table 2.3 Hodoscope stability data  

ToF 

(TDC bins) 

Charge 

(ADC 

channels) 

Run 

number 

(Nrun) 

File 

name 

Mean Rms Mean Rms 

Pedestals 

(ADC channels) 
Scale 

1 2402 −0.2 19.2 96.6 21.9 28 21 29 46 0.89 0.90 1.35 0.84 

2 0203 −0.47 19.5 96.2 22.1 36 32 38 52 0.85 0.81 1.39 0.88 

3 0303 0.09 19.4 96.6 22.1 40 36 46 55 0.89 0.82 1.39 0.88 

4 0803 0.45 19.5 96.5 21.9 43 39 48 58 0.98 0.83 1.30 0.88 

5 1203 0.07 19.6 96.5 21.9 44 34 50 55 0.97 0.83 1.24 0.89 

6 1703 0.16 19.7 96.6 22.1 44 33 50 56 0.95 0.83 1.33 0.88 

7 1803 0.61 19.6 96.5 21.9 44 33 50 56 0.99 0.83 1.29 0.90 

8 2203 −0.02 19.8 96.0 21.7 46 33 50 55 1.01 0.82 1.25 0.89 

9 2503 0.30 19.8 96.5 22.0 44 33 49 54 0.98 0.80 1.34 0.88 

10 2603 0.50 19.6 96.4 21.7 44 33 49 54 1.00 0.80 1.33 0.88 
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Figure 2.15 Dependence on run number of the rms values of the time of flight (left) and 

charge (right) distributions. 

 

Figure 2.16 Dependence on run number of the normalization constants (left) and of the 

ADC pedestals (right) for the four hodoscope PMTs. 

 

The dependence on run number of the rms values of the time of flight and 

mean charge distributions are illustrated in Figure 2.15 and that of the pedestals 

and normalization constants in Figure 2.16. Linear fits to the data of Figure 2.15 

give for the time of flight Rms=(19.4±0.1)+(0.04±0.01)×Nrun and for the mean 

charge Rms=(22.1±0.1)–(0.03±0.01)× Nrun. The variation is therefore barely 

significant. 
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2.4 Analysis of Cherenkov data 

We set the high voltages of the PMTs of the Cherenkov counter as 

1’390 V, 1’430 V and 1’283 V respectively in order to have, on average, 400 

channels of signal above pedestal. The pedestals are continuously monitored as a 

function of time (Figure 2.17). 

Pedestals are averaged over 250 successive measurements and these 

average values are retained as pedestals for the successive 250 measurements. 

The distribution of such average values over a typical run shows occasional 

spikes (upper panels of Figure 2.17). The distributions of individual pedestal 

measurements referred to the current average pedestal value (obtained from the 

preceding set of 250 measurements) have larger rms values than in the 

hodoscope case because of amplification. They reach 6, 4 and 8 ADC channels in 

PMT 1, 2 and 3 respectively. In early runs, PMT 1 and PMT 3 were seen to 

display important tails in their charge distributions but changing a leaky capacitor 

in a base and introducing silica gel in their environment solved the problem. 

 

 
 

Figure 2.17 Upper panels: typical evolution of pedestals 1 to 3 during a run. Lower 

panels: typical pedestal distributions during the same run.  
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2.4.1 Response of the Cherenkov counter to a hodoscope trigger 

Any particle (or set of particles) giving a hodoscope trigger must cross its 

upper and lower scintillator plates, and therefore have a total track length of at 

least 1.2 m in water. To the extent that its (their) velocity is above Cherenkov 

threshold, it (they) should give a Cherenkov signal. In particular, relativistic 

muons crossing the hodoscope are expected to account for most of hodoscope 

triggers and have a track length in water very close to 1.2 m: they should give 

signals having a narrow distribution around their mean. PMT gains have been 

adjusted for this mean value to be ~400 ADC channels. Figure 2.18 shows the 

corresponding charge distributions for each of the three PMTs and for the mean 

signal. As can be seen from the figure, all entries have a non zero charge. The 

rms values are 146, 128 and 139 ADC channels, which, quadratically combined, 

give 80 channels instead of 99 observed, giving evidence for correlations 

between the three measurements. 

 

 

Figure 2.18 Charge distribution of individual PMTs and their average (last panel). 
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2.4.2 Selection of good muons 

In all what follows, we define “good muons” as feed-through muons 

having a hodoscope charge between 30 and 220 ADC channels and a time of 

flight (defined as in Figures 2.12 and 2.14, i.e. after subtraction of ~11 ns) from 

−50 to 50 TDC bins. Typical charge distributions of individual PMTs and their 

mean are shown in Figure 2.19 for such “good muons”. The relative width of the 

mean charge distribution is now 22.5% compared with 24.2% before selection. It 

corresponds to 20±1 photoelectrons per VEM. The selection retains ~ 43% of the 

total number of triggers. The resulting VEM value is obtained from a Gaussian 

fit to the mean charge distributions averaged over four runs (Table 2.4). The 

result is 414±10 ADC channels.   

 

 

Figure 2.19 Charge distribution of individual PMTs and their average (last panel) after 

selection of “good muons”. 
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Table 2.4 VEM values obtained for four separate runs 

 

Before cut (fitted value) After cut (fitted value) 
File 

name Number of 

events 

Mean 

(ADC channels) 

Rms 

(ADC channels)

Number of 

events 

Mean 

(ADC channels) 

Rms 

(ADC channels) 

2106 31955 419 93 18078 422 92 

2206 96803 398 87 55233 399 89 

2506 96135 419 92 55504 415 87 

2806 31120 425 98 17718 421 96 

 

2.4.3 Conclusion   

The study of the Cherenkov response to relativistic vertical muons has 

shown a number of features that may be briefly summarized as follows: 

− The value of the relative width of the charge distribution measured for 

“good” vertical muons, 22.5%, can be compared with that measured in the PAO, 

~15%, implying that we have  (22.5/15)
2
=2.3 times less photoelectrons in 

VATLY than in the PAO. This results from both the lower water purity and the 

lesser quality of the wall diffusivity.  

− 1 VEM corresponds to 414±10 raw ADC channels. 
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3. Muon decays in the VATLY Cherenkov tank 

 

The present section uses simulations to evaluate what can be expected in 

terms of rates and charges from muons that stop and decay in the water volume 

of the VATLY Cherenkov detector. Both the stopping muon signal and the 

delayed signal from the decay electron need to be detected.  A related study has 

been made by P.T. Nhung and P. Billoir using PAO data [17]. A measurement in 

the VATLY detector will provide useful information on its ability to detect very 

low charge signals.  

 

3.1 Basic processes 

The basic processes of relevance are the slowing down of muons in water 

due to ionization energy losses and the emission of Cherenkov photons. The 

largest possible track length in the Cherenkov tank is lmax=
22 6.32.1 + ~3.8 m. 

Such a range corresponds to a muon momentum of ~0.8 to 0.9 GeV/c, meaning a 

kinetic energy T ~0.8 GeV. We can therefore assume that the differential energy 

loss is either at minimum or, in the lower energy range, inversely proportional to 

the muon kinetic energy [18]. We therefore adopt the following approximate 

formula for the differential energy loss: 

TdT/dx~138 MeV
2
g

−1
cm

2
 for T<53 MeV 

dT/dx=1.8+0.8{(331−T)/278}
2 
for T>53 MeV 

At 53 MeV, dE/dx=2.6 MeV and at minimum (331 MeV) dE/dx=1.8 MeV. 

The track length l of muons in water increases as a function of kinetic 

energy T as shown in Figure 3.1. We see from this figure that vertical muons start 

to feed through the tank (l>1.2 m) as soon as T exceeds 280 MeV.  

The second basic process of relevance is the emission of Cherenkov 

radiation. The Cherenkov threshold is β0=1/n=0.75 where n=1.34 is the 

refractive index of water. This corresponds to a kinetic energy, 
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T0=(E0− mc
2
)=54 MeV, where m=106 MeV/c

2
 is the muon mass, and 

E0=γ0mc
2
= 2

0
β1mc −2 .  

The half-aperture of the Cherenkov cone is θ=cos
–1

(1/βn) and the density 

dN/dx of Cherenkov photons radiated by a muon having velocity β over a 

distance dx is proportional to sin
2θ=1−1/(βn)

2
. For β=1, θ ~41

o
. It is convenient 

to use VEM as unit: 1 VEM=120×80×(1−1/n
2 
) photons, where the number of 

photons per centimeter, dN0 /dx, has been taken equal to 80 in the wave length 

range of relevance. For three photomultipliers and a photocathode efficiency of 

10%, this means 140 photoelectrons per VEM compared with ~100 in the PAO. 

Hence, in VEM units, dN/dx is independent of dN0 /dx:  

dN/dx={1−1/(βn)
2
}/{1−1/n

2
}/120=1.9×10

–2
{1−1/(βn)

2
} VEMcm

−1
. 

 

 
 

Figure 3.1 Muon track length in water (m) as a function of kinetic energy (MeV). Red 

arrows are for a muon that just stops in 1.2 m and blue arrows for a muon that just emits 

1 VEM before stopping. 

 

A muon having low enough a kinetic energy stops in the water tank. The 

number of photons it radiates depends only on the kinetic energy it has when 

entering the tank and so do its track length and the track length over which it 

radiated photons. In principle (but in practice it would require a much higher 

measurement accuracy than available here), measuring the signal produced by a 

stopping muon should therefore provide a measure of its initial kinetic energy. 

T (MeV) 

l 
(m

)
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This is illustrated in Figures 3.2 and 3.3 showing the dependence on kinetic 

energy of the total number of Cherenkov photons radiated by a muon before 

stopping. A 280 MeV muon that just stops in 1.2 m of water (red arrows in 

Figures 3.1 and 3.3) emits only ~2/3 of a VEM while a muon that just emits one 

VEM before stopping (blue arrows in Figures 3.1 and 3.3) has a kinetic energy of  

~370 MeV and a track length of ~1.6 m. Of course, by definition, a relativistic 

muon emits 1VEM in 1.2 m of water. 

 
 

Figure 3.2 Dependence on track length of the initial kinetic energy of a stopping muon 

(upper curve and left hand scale) and of the number of Cherenkov photons radiated 

(lower curve, arbitrary units). The arrows illustrate how the initial kinetic energy can in 

principle be deduced from the muon signal.  
 

 

Figure 3.3 Total number of Cherenkov photons (measured in VEM units) radiated by a 

muon of kinetic energy T (MeV) in deep water. Red arrows are for a muon that just 

stops in 1.2 m and blue arrows for a muon that just emits 1 VEM before stopping. 
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3.2. Simulation of the detector and muon signal 

We now use a toy Monte Carlo to simulate the response to muons. Muon 

trajectories are generated with an isotropic angular distribution, their distance to 

the centre of the water volume not exceeding ½lmax.  Each muon is given a 

weight (1−0.108sin
2θ)cos

2θ in order to take account of the zenith angle 

dependence of the atmospheric muon flux in Hanoi [8].   

The kinetic energy is generated with an exponential distribution of mean 

value Emean. The length of the trajectory in the water volume is calculated and the 

number of radiated Cherenkov photons is evaluated as described in the preceding 

paragraph.We use a coordinate system having its origin O at the centre of the 

water volume, Oz vertical pointing upwards, Ox pointing west and Oy pointing 

south. The muon trajectories are taken as straight lines (multiple scattering is 

ignored) with unit vectors u=(ux,uy,uz)=(sinθcosϕ, sinθsinϕ, cosθ). They are 

generated with uniform ϕ ∈[0,2π] and cosθ ∈[0,1] distributions. Those which 

cross the tank enter the water volume at A and leave it at B.  

We define 5 families of trajectories (Figure 3.4): 1, missing the tank all 

together; 2, having A on the upper plate and B on the wall; 3, having A on the 

upper plate and B on the lower plate; 4, having both A and B on the wall; and 5, 

having A on the wall and B on the lower plate.  

 

 

Figure 3.4 Definition of trajectory families. 

1 

4 

3 

5 

2 
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Table 3.1  Properties of the five families of trajectories (Emean=3 GeV). 

 

Family 
1 

Missing 

2+5 

Wall-plate 

3 

Plate-Plate 

4 

Wall-wall 

Abundance 9.7% 42.2% 47% 1.1% 

Fraction 

stopping 
− 5.3% 7.8% 9.2% 

<VEM> feed-

through 
− 0.73 1.19 1.47 

<VEM> stop − 0.22 0.28 0.55 

<f > − 0.74 0.81 0.84 

 

A muon may produce no detectable photon either because it misses the 

tank or because its kinetic energy is lower than the Cherenkov threshold. 

Moreover, it may or may not stop in the tank. If it does not, it does not produce 

any detectable decay electron. Table 3.1 gives the properties of the five families 

for Emean=4 GeV and Figures 3.5 to 3.8 display the distributions of their track 

length and of the Cherenkov light emitted by the muon (in VEM), whether 

stopping or not in the water volume. 

 

Figure 3.5 Track length distribution for families 2 to 5. Note the different vertical 

scales. 
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As shown in Figure 3.5, families 2 and 5 share identical properties. 

Indeed, they both have tracks joining the side wall to the upper or lower plate, 

and which of these two plates is implied is irrelevant as the problem is symmetric 

with respect to O. From now on, we shall therefore group families 2 and 5 

together into a single one.  Tracks of this family can have zero length when they 

hit a corner and are then expected to have a flat distribution as their impact scans 

the side wall vertically. This is indeed what is observed. Then, when their length 

exceeds 1.2 m, their distribution decreases and cancels at the maximum possible 

track length, lmax~3.8 m. Tracks of the third family, joining the upper to the lower 

plate, are always longer than 1.2 m and may also reach lmax, however this is 

relatively much less probable than in the former case. Finally, tracks of the fourth 

family must be close to horizontal if they are long, in which case they show the 

typical 1/cosine distribution corresponding to the projected density of a circle. If 

they are short, they may have all possible zenith angles and the decrease of the 

cosmic flux with zenith angle competes with geometry to produce a broad 

maximum at ~1 m track length. While the plate-wall and plate-plate 

configurations have comparable abundances, the wall-wall configuration is much 

less likely, only ~1% of the total. 

 

 

Figure 3.6 Charge distributions (VEM) for feed-through muons (red) and stopping 

muons (blue) respectively. The curves are for Emean=3 and 5 GeV. Families 2+5, 3 and 4 

are displayed from left to right. Note the vertical log scales. 
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Figure 3.7 Charge distribution (VEM) for stopping muons and Emean=5 GeV. Families 

2+5, 3 and 4 are shown in red, black and blue respectively. The spikes at zero are from 

stopping muons having β below Cherenkov threshold. 

 

The number of Cherenkov photons produced would correspond to the 

collected charge in the ADC if the detector were perfect. We calculate it in VEM 

units, using the considerations of the preceding paragraph. As it depends on the 

kinetic energy distribution, we assume an exponential distribution with mean 

Emean=3, 4 or 5 GeV. The mean charges listed in Table 3.1 are for Emean= 4 GeV. 

The fraction of stopping muons is ~6.5% on average, slightly larger for the plate-

plate configuration than for the plate-wall configuration. As shown in Figure 3.6, 

the dependence on Emean is weak, the larger Emean, the less likely it is for the muon 

to have low enough energy to stop in the water volume. On average, the 

Cherenkov light emitted by a stopping muon corresponds to one quarter of a 

VEM. Figure 3.7 shows their distributions for Emean= 5 GeV. The spikes at zero 

charge corresponds to track lengths smaller than the 11 cm during which a muon 

no longer radiates before finally stopping. Figure 3.8 illustrates further the 

influence of geometry on the stopping probability. 

The expected total rate is ~1.4 kHz for feed-through muons and therefore 

~20 Hz for coincidences of two feed-through muons in a 10 µs window. The total 

stopping muon rate is at the 100 Hz scale. Of these, only a fraction will be 

detected and an even smaller fraction will produce a detectable decay electron. 
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Figure 3.8 Track length distributions at Emean= 4 GeV for feed-through muons (red) and 

stopping muons (black). The blue curves are, for stopping muons, distributions of the 

length of the trajectory between its intersections with the tank wall. 

 

For the decay electron (meaning electron or positron) to be detected, the 

muon should not stop too close from the tank walls: when calculating the 

expected rate, one should consider a fiducial volume slightly smaller than the 

tank volume. Once averaged over muon polarization, the electron may be emitted 

forward or backward with equal probabilities and the bulk of the electron shower 

covers some 20 cm (one radiation length is 36 cm). The energy E carried by the 

decay electron, averaged over polarization and electron emission angle, has a 

distribution of the form dN/dx=2(3x
2
–2x

3
) where x=2E/Mµc

2
 varies between 0 

and 1. The mean value of x is 0.7, meaning for E a mean value of 37 MeV. This 

is a very low energy and in practice, only the high energy tail of the shower 

energy distribution will be detected. In order to mimic the effect of the fiducial 

volume, one simply multiplies E by a factor f=(1–½exp(–Lupstream/Λ)(1–½exp(–

Ldownstream/Λ) where Lupstream and Ldownstream are the distances separating the stop 

point from the entrance and respectively exit points of the trajectory in the water 

volume, Λ defining the shower size and being commensurate with the radiation 

length. The f factor is unity when the muon stops far from the tank walls (Lupstream 

and Ldownstream >> Λ) and is equal to ½ when the muon stops close to the wall. Its 

distributions are illustrated in Figure 3.9 for Emean=4 GeV and Λ=24 cm. As seen 

from Table 3.1, on average, f is of the order of three quarters. Muons producing 
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Cherenkov light stop far from the entrance point of the trajectory: the f factor has 

very little effect when applied to the entrance wall once the presence of a muon 

signal has been required. On the contrary, it has a significant effect on the exit 

wall end, in particular for muons producing larger Cherenkov signals. We note 

that the mean electron signal is known [17] to be around 0.12 VEM in PAO data. 

 

 

Figure 3.9 Distributions of the fiducial volume factor f for families 2+5 (red), 3 (black) 

and 4 (blue) respectively.  
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4. Auto-correlations: rates and time distributions 

 

In the present section and the three sections that follow, we study auto- 

correlation spectra from the VATLY Cherenkov detector and, for comparison, 

from scintillator plates. The aim is double: first to obtain information on the 

detection of very low charge signals in the Cherenkov detector, second to 

measure the probability of having two muons from a same shower be 

simultaneously detected in the VATLY Cherenkov tank. The present section is 

an introduction to the subject and presents some general features of auto-

correlation spectra. 

 

4.1 The problem  

We consider a detector producing an output signal S with a rate R. S is fed 

at both start and stop inputs of a Time-to-Amplitude Converter (TAC), the start 

signal being delayed by ∆0 in order to avoid that a single S signal could both start 

and stop the TAC. Ideally, it should be sufficient to have ∆0 exceed the width δ0 

of S. In practice, however, because of possible after-pulses associated with S 

(poor impedance matching, ringing, PMT after-pulsing, etc…) one will adjust 

∆0 >δ0 in order to avoid measuring trivial instrumental correlations. When two 

consecutive pulses are separated by a time t >∆0, the stop arrives a time t–∆0 after 

the start and the TAC gives an output signal O called autocorrelation signal with 

amplitude proportional to t–∆0. Its amplitude distribution is therefore a measure 

of the distribution of the time separation between the two consecutive pulses, f(t). 

When analyzed in a multichannel analyser (analogue-to-digital converter) it 

produces an auto-correlation spectrum that reflects the distribution f(t). When 

there is no stop within a time Trange after a start, the TAC produces no output and 

is ready to register a new start pulse.  
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4.2 No correlation 

The simplest case is when there is no correlation between two successive 

signals S. For example, S may be produced by thermal noise in the detector or by 

a long-lived radioactive source. The probability to have S occur between t and 

t+dt is then a constant equal to Rdt. Taking the first pulse as origin of time, the 

probability to have the next pulse between t and t+dt is therefore the product of 

Rdt by the probability limn→∞(1–Rt/n)
n
=exp(–Rt) that there had been no stop 

signal beforehand. Hence f(t)=Rexp(–Rt). The autocorrelation spectrum is a 

decaying exponential with time constant 1/R. 

Taking in account the delay ∆0,  

f(t)=Rexp(–R[t–∆0])=Rexp(R∆0)exp(–Rt)   for  t>∆0. 

 

4.3 Cosmic rays 

Cosmic rays on Earth are secondary particles produced in a cascade of 

interactions triggered by a primary particle (usually a proton) in the Earth 

atmosphere. Such cascades, called extensive air showers, hit ground in the form 

of numerous nearly isochronous particles. Their density decreases almost 

exponentially with the distance to the impact on ground of the shower core. Their 

time distribution decreases rapidly with a typical microsecond scale. 

For a detector of area A, the probability of having two particles of the 

same shower hit the counter depends on energy and on the distance of the 

detector to the shower core but is proportional to A as long as A is much smaller 

than the area covered by the shower on ground. If the detector is small enough, 

this probability can be neglected: two successive signals S are always associated 

with different showers and we are in the case of Section 2 above. When the 

detector is large, we call g(t)dt the probability to have a second shower particle 

detected in the counter between t and t+dt after the arrival of the first particle. 

Their contribution to R is R’ ∫ dt)t(g , the sum running from 0 to infinity, with 

R’= R/(1+ ∫ dt)t(g ).   
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Using the time of the first pulse as origin, the probability to detect a 

second particle from the same shower, g(t)dt, competes with that of having a 

particle from another shower, Rdt. We may approximate g(t)=g0Rshexp(–Rsht), in 

which case R’=R/(1+g0 ). We shall assume that g0<<1 and Rsh >>R. 

The probability of having had no stop signal before time t is the product of 

exp(–R[t–∆0]) by 1–∫g(t)dt where the sum is from ∆0 to t, namely:  

             exp(–R[t–∆0]){1–g0[exp(–Rsh∆0)–exp(–Rsht)]} 

= exp(R∆0){Aexp(–Rt)+g0exp(–[R+Rsh]t)} with A=1–g0exp(–Rsh∆0) 

Hence f(t)= exp(R∆0){R+g0Rshexp(–Rsht)}{Aexp(–Rt)+g0exp(–[R+Rsh]t)} 

= exp(R∆0){ARexp(–Rt)+g0(ARsh+R)exp(–[R+Rsh]t)+g0
2
Rshexp(–R+2Rsh]t)} 

~ exp(R∆0){ Rexp(–Rt)+g0R*exp(–R*t)} with R*=R+Rsh 

The auto-correlation spectrum is the sum of two exponentials, one with 

decay time 1/R* and the other with decay time 1/R. The ratio of their amplitudes 

is g0R*/R. The effective decay rate depends on t: the spectrum is no longer a 

single exponential. Note that ∆0 acts only as a threshold on t but not on the shape 

of the curve. The factor exp(R∆0) is only there for normalization (the probability 

for t→∞ must be unity).  

 

4.4 Muon decays and muon captures 

Let us assume that ∆0 is large enough for g0 to be negligible as well as 

after pulses. Then f(t)=Rexp(–R[t–∆0]).  

However, at sea level, most cosmic particles are muons, some of which 

may stop in the detector and decay or be captured. Those which stop and decay 

will produce an electron which might give a signal. Let fstop be their fraction.  

In vacuum, muons decay with a decay time τd=1/Rd=2.20 µs. In matter, 

negative muons may be captured with a rate Rc. In such a case, decay and capture 

compete: if the muon has decayed, it no longer may be captured, and if it has 

been captured, it no longer may decay (at least for quite a while). The 
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disappearance rate of negative muons is therefore R’=Rc+Rd. Note that the 

capture rates in carbon and oxygen are respectively 0.038 and 0.103 per 

microsecond [19]. The µ
+
 to µ

–
 ratio in Ha Noi is of the order of 1.25, meaning a 

fraction of negative muons ρ–~0.44 [20]. The probability for an electron signal to 

occur between time t and t+dt from the decay of a stopped muon having given a 

signal is therefore, η being the probability to detect the decay electron, 

– in the case of a positive parent muon, ηRd exp(–Rdt)dt 

– in the case of a negative parent muon, ηRd exp(–R’t)dt 

The probability to have an electron signal between t and t+dt is therefore 

fstopηRd{(1–ρ– )exp(–Rdt)+ρ– exp(–R’t)} dt, which reduces to fstopηRd exp(–Rdt) dt 

when there is no capture. The total electron rate is therefore 

Rel=Rfstopη{(1–ρ– )+ρ– Rd /R’}. 

Consider first the no capture case, Rel=R fstopη 

f(t)=exp(–R[t–∆0 ]){1–fstopηRd ∫exp[–Rdt]dt}{R+fstopηRd exp(–Rdt)} 

where the sum extends from ∆0 to t.  

f(t)=exp(–R[t–∆0]){1–fstopη{exp[–Rd∆0]– exp[–Rd t]}}{R+fstopηRd exp(–Rd t)} 

=exp(R∆0 ){A R exp(–Rt)+B exp(–[R+Rd ]t)} 

A=1–fstopηexp[–Rd ∆0] ~ 1 ; B=fstopηR+AfstopηRd  ~  fstopη(Rd+R) 

f(t) ~ exp(R∆0 ){Rexp(–Rt)+fstopη[R+Rd ]exp(–[R+Rd ]t} 

Including capture, f(t)=f+(t)+f–(t) 

f+(t)=(1–ρ– )exp(R∆0 ){Rexp(–Rt)+fstopη[R+Rd ]exp(–[R+Rd ]t} 

f–(t)=ρ– exp(R∆0){Rexp(–Rt)+fstopη[Rd /R’][R+R’]exp(–[R+R’]t} 

f(t)=exp(R∆0){Rexp(–Rt)+fstopη(1– ρ– )[R+Rd ]exp(–[R+Rd ]t 

 +fstopηρ– [Rd /R’][R+R’]exp(–[R+R’]t} 
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The auto-correlation spectrum is the sum of a muon term with decay time 

1/R and of two electron terms, one with decay time 1/[R+Rd], the other with 

decay time 1/[R+R’]. The relative amplitudes of the electron terms are 

(1–ρ– )fstopηRd /R and ρ– fstopηRd /R respectively.  

 

4.5 Decays, captures and multimuons 

Combining the effects discussed in the preceding sections, we obtain (no 

capture), writing φ=fstopη: 

f+(t)=(1–ρ– )exp(R∆0 )exp(–Rt){1+g0 exp(–Rsh t)–g0 exp(–Rsh ∆0 )+φexp[–Rdt] 

–φexp[–Rd ∆0 ]}{R+g0 Rsh exp(–Rsht)+φRd exp(–Rdt)} 

~ (1–ρ– )exp(R∆0 ){Rexp(–Rt)+g0[R+Rsh ]exp(–[R+Rsh ]t)+φ[R+Rd ]exp(–

[R+Rd ]t)} 

f–(t)=ρ–exp(R∆0 ){Rexp(–Rt)+g0[R+Rsh ]exp(–[R+Rsh ]t+φ[Rd /R’][R+R’]exp(–

[R+R’])t)} 

Writing Rsh*=Rsh+R, Rd*=Rd+R, R’*=Rd+Rc+R, φ+= fstopη(1– ρ– ) 

and φ–=fstopηρ–Rd /(Rd+Rc ) 

f(t)=exp(R∆0){Rexp(–Rt)+g0R*shexp(–R*sht)+φ+R*dexp(–R*dt)+φ–R’*exp(–R’*t)} 

To a good approximation, Rsh, Rd and Rc are much larger than R, and we 

may write: 

f(t)=Rexp(–Rt)+g0Rsh exp(–Rsh t)+φ+Rd exp(–Rd t)+φ– R’exp(–R’t) 

Indeed, under such an approximation, the probability of having a stop in 

the TAC range is very small (most starts are not accompanied by a stop) and the 

probability of having two stops in the TAC range is negligible; f(t) is then simply 

the sum of the independent contributions of four possible stops: a muon from a 

new shower, a muon from the same shower, a decay positron and a decay 

electron. The probability of having a stop in the TAC range is therefore obtained 

by integrating the associated terms in the expression of f(t) between ∆0 and   
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∆0+Trange. As ∫ −−−=−
b

a

)kbexp()kaexp(dt)ktexp(k   

{ }∫
+

−−−=−
range0

0

T

range0 )kTexp(1)kexp(dt)ktexp(k

∆

∆

∆  and we obtain for the 

probabilities, writing R+ for Rd and R– for R’ : 

 

4.6 Simulation 

In order to study the above relations, a toy Monte Carlo code has been 

written using as default input parameters (unit of time is microsecond): 

R+=1/2.2;  R–=1/1.8 (carbon);  Rsh=1;  R=2×10
–3

;  g0=0.2%; φ=0.5%; ρ–=0.44; 

∆0=1;  Trange=10. Fits of the generated TAC spectrum to a sum of exponentials 

are then used to recover the input parameters from the generated distributions.  

In a first step, one sets g0=0 and varies φ. One then fits the TAC spectrum 

according to the above expression, using as free parameters the overall 

normalisation constant, the decay time 1/R+ and φ. The other parameters are fixed 

to their correct value (i.e. Rsh, g0, ρ– , Trange and ∆0) except for R which we may fix 

or keep free. The fit gives good results when the electron signal is strong enough 

but gives bad muon lifetimes when the electron signal is weak with respect to the 

statistical accuracy (Figure 4.1). For such weak signals, what happens is that 1/R+ 

and φ become strongly correlated as illustrated in Figure 4.2.  

P=PR+g0Psh+fstopη(1– ρ– )P++fstopηρ–(R+/R–)P– with 

PR=1– exp(–RTrange) 

Psh=exp(–Rsh ∆0){1–exp(–Rsh Trange)} 

P+= exp(–R+ ∆0){1–exp(–R+ Trange)} 

P–= exp(–R– ∆0){1–exp(–R– Trange)} 
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Figure 4.1 Best fit values of the mean muon decay time, 1/R+, as a function of fstop=φ/η. 
For the lower statistics and leaving all parameters free (red circles), the best fit value of 

the muon decay time is too high unless the signal is very strong. For higher statistics 

and still leaving all parameters free (blue stars), the result is much improved. But even 

with the lower statistics fixing R to its input value (black squares) gives a good result. 
 

 
 

Figure 4.2 Example of a low signal case, φ=0.00025. The correlation between φ and 

1/R+ as obtained from the fit is illustrated on the left panel. The associated very small 

variations of χ2
, less than 2%, are displayed on the right panel.   

 

It is therefore important to fix as many parameters as possible in order to 

obtain reliable fit results. In practice, the values of R, R+, R– and ρ– are known 

and can be fixed in the fit. This is studied in a second step where TAC spectra are 

generated with various values of φ=fstopη and g0 and fitted to the sum of four 
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exponentials with R, R+, R– and ρ– fixed. The free parameters are, in addition to 

an overall normalization factor, φ, g0 and Rsh.  

The results are illustrated in Figures 4.2 and 4.3.  

 

Figure 4.3 Example of fits of a time distribution generated with g0=0.0005 (blue dots) 

or g0=0.001 (red dots), 1/Rsh=1 and φ=0.005. Left panel:  dependence on 1/Rsh of the 

fitted value of g0 when g0, φ and the overall normalisation parameter are adjusted by the 

fit. Middle panel: same as left panel but showing φ instead of g0. Right panel: 

dependence of the χ2
 on 1/Rsh. 
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5. Auto-correlations: electronics and data acquisition 

 

The recorded data include autocorrelation spectra and charge distributions. 

The autocorrelation spectra use a Time-to-Amplitude Converter (TAC), the 

output of which is sent to a Multi-Channel Analyzer (MCA). The charge 

distributions are measured in Analogue to Digital Converters (ADC) using a 

CAMAC data acquisition system. 

A simple fast electronic circuit, using the NIM standard, is used as front 

end. It is common to the Cherenkov and scintillator configurations. 

The signal studied is a coincidence between two photomultiplier tubes 

(PMT) signals. In the Cherenkov case, they are the dynode signals of PMTs 1 

and 2, pre-amplified in the PMT bases; in the scintillator case, they are the anode 

signals of the two PMTs collecting separately the scintillation light. These are 

then amplified twice in succession using fast home made amplifiers having gain 

10 each. The signals sent to the ADCs are passively split at the output of the first 

amplification stage. An additional split between the first and second 

amplification stages is used to halve the signal amplitude and the outputs of the 

second amplification stage are sent to fast discriminators, the output of which are 

used in coincidence to produce the main signal.  

 

5.1 Auto-correlation measurement 

The autocorrelation measurement uses the main signal as both start and 

stop signals of the TAC. However, care is taken to maintain a low rate at the 

TAC input in order to assure its proper behaviour. This is done by replacing the 

main signal by a coincidence between itself and another main signal occurring 

within a time window of W1 µs following it. We call δt the time difference 

between the two signals. In practice, the main signal is triplicated using a fan-out 

NIM unit. One copy of it is used as input to a timing unit TU1 having a delay D1 

and width W1. In principle, D1 should simply exceed 50 ns in order to prevent an 

overlap with the input signal. In practice, however, a larger value is preferable in 
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order to be clear of possible undershoots, ringing or after-pulses associated with 

the main pulse. In the present set-up, values of D1 vary from 0.5 µs to 5 µs. The 

output of TU1 is used as a gate to a discriminator having as input another copy of 

the main signal. The output of this discriminator (having a width of 50 ns) has 

therefore the same timing as the second signal and is used to start the TAC. It is 

delayed by δt µs with respect to the main signal. Other outputs of this 

discriminator are used as inputs to a CAMAC pattern unit and to the ADC gate 

(Figure 5.1). The third copy of the main signal (at the fan-out output), in 

anticoincidence with the TU1 output, is used as input to a second timing unit, 

TU2, having delay D2 and width W2. The anticoincidence prevents stopping the 

TAC with the same signal as that which starts it. The role of TU2 is to provide a 

stop signal to the TAC with proper fixed width W2 (50 ns) and delay D2 after the 

main signal, implying a delay D2–δt after the start signal. A detailed timing 

diagram is shown in Figure 5.2. With such logic, both the start and stop inputs of 

the TAC are activated only when the main signal is followed by another within a 

window [D1, D1+W1] with respect to the first, thus reducing the rate 

considerably. It must be noted, however, that it is the second of these signals that 

starts the TAC and the first that stops it, resulting in a time distribution inverted 

with respect to normal. The TAC output is sent to the MCA after passive division 

by a factor 4. 

 

Figure 5.1 TAC logic diagram. 
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Figure 5.2 TAC timing diagram. 

 

5.1.1 Timing considerations 

As can be seen from Figure 5.2, the value of D2 must exceed D1+W1. As 

the TAC is being used with a nominal range of 10 µs full scale, this implies that 

D1+W1 – δt<D2 – δt <10 µs . 

We checked this on actual spectra, recording the values of the lower 

channel, Clow and that of the upper channel, Chigh for different values of D2, D1 

and W1.  The dependence of Chigh on D2–D1 is displayed in Figure 5.3. It shows a 

linear dependence, as expected, up to the point where the TAC limit, 11.8 µs is 

reached. We also notice the presence of a spike that disappears as soon as D2–D1 

>~W1 (Figure 5.4). This is studied in detail in section 5.13. The dependence of 

Clow on D2–D1–W1 (Figure 5.5) shows a linear dependence down to 120 channels. 

However, the number of channels stops changing and stays at ~120 for            

D2–D1–W1 < ~0.6 µs. This means that there is a pedestal at ~120 channels and a 

threshold at ~0.6 µs. These results can be summarized as follows: 

For        D2–D1–W1<~ 0.6 µs, Clow=120 

   D2–D1–W1>~ 0.6 µs, Clow=120+229(D2–D1–W1 – 0.6) 
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   D2–D1<11.81 µs, Chigh=2690+229(D2–D1–11.81) 

   D2–D1>11.81 µs, Chigh=2690 

 

Figure 5.3 Dependence of the upper limit of scintillator spectra as a function of D2–D1 

measured in µs. The fit gives an end point at 11.81 µs and channel 2690.  

 

Figure 5.4 Dependence of the spike position on D1. 

             

Figure 5.5 Dependence on D2–D1–W1  (µs) of the lower limit of scintillator spectra. The 

best fit gives an end point at 0.60 µs and channel 120. 
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Here, we calculated the scale of 229 channels per microsecond by simply 

dividing Chigh–Clow =2690–120=2570 by 11.81–0.6=11.21 µs. Namely we 

assumed a linear relation between channel and time. This result can be extended 

to the general case, where we assume the pedestal Cped to be run-dependent in an 

apparently random fashion. For a time difference δt between the stop and start 

signals, we measure a channel C such that: 

If  D2–D1–W1< 0.6 µs, Clow= Cped 

 D2–D1–W1> 0.6 µs, Clow= Cped +229(D2–D1–W1–0.6) 

 D2–D1<11.81 µs,    Chigh=2570+ Cped+229(D2–D1–11.81) 

 D2–D1>11.81 µs,    Chigh=2570+ Cped 

On the low side, we measure Max(0, D2–δt–0.60) and on the high side 

Min(D2–δt ,11.81).  

For 0.6 µs <D2–δt<11.81 µs,  

C=Cped+229(D2–δt–0.6)=Cped+2570+229(D2– δt –11.81) 

For 0.6 µs>D2–δt,         C=Cped 

For D2–δt>11.81 µs,     C=2570+Cped 

We assumed that the relation between channel and measured signal is 

linear with an average slope of 229 channels per microsecond, but in reality it is 

not. This non-linearity is studied below. 

 

5.1.2 Calibration 

In order to check the proper performance of the electronics and to 

calibrate the TAC and MCA, a special circuit has been assembled. Its diagram is 

shown in Figure 5.6.  A NIM pulse generator operated at 1 kHz frequency is used 

as input to a timing unit used to delay the pulse by an adjustable quantity. The 

original and delayed pulses are OR’ed and sent to the input of the fan-out unit at 

the front end of the electronics that prepares the start and stop signals (Figure 

5.1). Results of the calibration are shown in Figure 5.7 where  

D1 = 1.0 µs, W1=10 µs and D2 =11.5 µs. A second degree polynomial fit 

gives δt =δt0–N(1+N/20322)/259.1 where δt is the delay between the two pulses 



 65 

and N is the associated number of MCA channels. Namely, for N=2570 channels, 

the second term is 11.2 µs, in excellent agreement with 11.81–0.6=11.2 µs. We 

therefore retain, in the authorised range, 0.6 µs<D2–δt<11.81 µs  

δt=D1+W1+0.5–0.6–(C–Cped)(1+(C–Cped)/20322)/259.1 

 

In most data, W1=10 µs. When such is the case, we may rewrite 

 

δt=D1+9.9–(C–Cped)(1+(C–Cped)/20322)/259.1. 

Note that δt=9.9 µs for C–Cped= 2300 channels; hence the procedure: 

Measure the highest and lowest spectrum channels, Chigh and Clow. Check 

that Chigh–Clow=2300 to better than ~1%. Correct Chigh and Clow by opposite 

amounts to have Chigh–Clow=2300 exactly. Then equate Cped=Clow and calculate δt 

using the relation δt=D1+9.9–(C–Clow)(1+(C–Clow)/20322)/259.1.   

 

 

Figure 5.6 Logic diagram for the calibration. 
 

 

Figure 5.7 Calibration curve of the TAC+MCA system.  
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For D2=D1+W1+0.5 and W1=10, we can rewrite this result for different 

values of D2 as follows: 

δt=D2–0.6–(C–Cped)(1+(C–Cped)/20322)/259.1 

From the calibration data, we obtain an estimate of the uncertainty on the 

time measurement of 60 ns.  

 

5.1.3 Spikes 

At low threshold or for small D1, the MCA spectrum displays two spikes 

in the region of δt=5 µs. An example is shown in Figure 5.8.  

 

 

Figure 5.8  Cherenkov spectrum measured for D1=5 µs. The abscissa had been shifted 

by 696 channels, so the spikes occur in reality around channel 1900 corresponding to 

δt ~5 µs.   

 

A systematic survey shows that the occurrence of such spikes depends 

only on the value of D1 but requires D2 to be smaller or just slightly larger than 

D1+W1. This suggests that spikes are associated with configurations where a 

second pulse arrives between D1+W1 and D2 after the first pulse as illustrated in 

Figure 5.9.  
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D2+D1–δt. For δt<D2, one has the normal behaviour. Namely one measures    

D2–δt. For δt= D2 one measures 0 in the normal case and D1 in the abnormal 

case. Therefore, as far as the spectrum is concerned, the situation is as follows: 

0<δt<D1   no TAC signal;  

D1<δt<D2 one measures D2–δt, going from D2–D1 to 0 (in fact to the 

MCA threshold); 

D2<δt<D1+W1 one measures D2+D1–δt, going from D2–W1 to D1 under 

the condition that the leading edge of TU1 generates a D2. 

The spike occurs when δt=D2.  

 
 

Figure 5.9 Configuration in which a spike may occur. 

 

We tried to reproduce this situation with the double pulse generator but 

did not succeed, implying that the occurrence of spikes requires in addition some 

abnormal behaviour not reproduced by the double pulse generator. 

We checked that the presence of such spikes is, however, harmless to the 

data analysis by remarking that, when they occur, it is in the region where the 

time spectrum is flat and, moreover, their area cancels. This is illustrated in 

Figure 5.10 where one sees that the spikes are essentially independent from 

threshold and in Figure 5.11 which shows that their area cancels: fits to a 

spectrum showing a spike give the same result whether the spike is included in or 

excluded from the fit. 
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Figure 5.10 Eleven Cherenkov MCA spectra are shown (in blue) in the spike region for 

a common D1 value but different thresholds (here D2=15.5 µs, D1=5.0 µs, W1=10.0 µs). 

The red curve is their average distribution. 
 

 

Figure 5.11 Average spike from the spectra displayed in Figure 5.10. Its area cancels to 

better than 1%. 
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5.2 Charge measurement 

      The charges of both the hodoscope scintillator signals and Cherenkov 

signals are recorded in a single ADC activated by three possible gates. The 

diagram of the associated electronics is shown in Figures 5.12 and 5.13. A first 

gate is generated by the start signal, namely the second signal of a correlated 

pair; a second gate is generated by a clock made of a fed-back timing unit and is 

used to measure pedestals; the third gate is generated by a coincidence between 

the four scintillator plates of the hodoscope. All three gates are converted to a 

common broad gate, an essential requirement in order to be able to have a 

common charge scale and to perform the VEM calibration properly. The timing 

of the gate with respect to the signals being analysed has been carefully adjusted 

to ensure that the signals are in all cases well contained within the gate. Pattern 

units are used to tell which trigger was active. 

 

 
 

Figure 5.12 Diagram of the electronics used for the charge measurement. 

TU2 

Disc 

Gate 

ADC 

H3 
H4 

H5 
H6 

TDC Start 

H3 

H4 
H5 

H6 

D 

In 

End marker 

 

C2 

 
C3 

 

C1 

1s 

W=100 ns 

 

Disc 

PU 2 

PU 1 

Hodoscope 

H3 H4 H5 H6 

Start 



 70 

 

                                       

Figure 5.13 General diagram of the NIM logic electronics. 
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6. Auto-correlations: data analysis 

 

The present section presents the result of the analysis of data collected 

using the experimental set-up described in the preceding sections, namely the 

main Cherenkov detector and its trigger hodoscope used for calibration. In 

addition, it includes the analysis of data collected using a simple scintillator 

detector assembled in order to provide a reference with which the main 

Cherenkov data can be compared. The scintillator detector has an area of 120×40 

cm
2 
and is described below (sub-section 6.1.3).   

Multiple muon events (from a same shower) are expected to be less 

numerous in the scintillator case than in the Cherenkov case, in a ratio equal to 

that of the detector area, namely ~1/30. In the Cherenkov case, they may give a 

contribution that competes with the decay electrons. Indeed, while stopping 

muons give a large signal in the scintillator at the end of the Bragg curve and 

decay electrons deposit ~50 MeV on average, namely four times more than feed 

through muons, on the contrary, in the Cherenkov case, stopping muons stop 

emitting Cherenkov light before stopping and electrons are known to emit of the 

order of one tenth of the light emitted by feed-through muons. The scintillator 

geometry allows for ignoring muons from a same shower and gives a reference 

with which to compare the Cherenkov data. 

 

6.1 TAC spectra  

   6.1.1 Introduction 

Auto-correlation spectra have been measured over a time range 

Trange=10 µs  while the rate R is of the order of 200 particles per m
2
 per second, 

namely ~100 Hz in the scintillator detector case and ~2 kHz in the Cherenkov 

detector case, corresponding to decay times of 10 ms and 500 µs respectively: R 

contributes a nearly flat background. We expect muon rates of the order 2 kHz 

and detected electron rates of the order of 0.4 Hz in the Cherenkov case. In the 

scintillator case, the muon rate is at the 100 Hz level and the probability to have a 
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second muon in the TAC range is therefore ~10
−4 

while the probability to have a 

stopping muon is at the per mil level, an order of magnitude larger.   

 

6.1.2 Cherenkov spectra 

A total of 92 time spectra have been collected, of which 62 are of 

Cherenkov data.  We first estimate the values c1 and c2 of the MCA low and high 

channels and evaluate the value of W1 from relation W1=t2–t1 where t is 

calculated from the corresponding channel c using the formula given in Section 

5.1.2:  

t=D2–0.6–(c2–c1)(1+(c2–c1)/20322)/259.1  

and display it in Figure 6.1. The distribution is very narrow with a mean value of 

9.98 µs and an rms value of 0.06 µs. However, the observed spread is associated 

with different sequences of data collection, each peak corresponding to a same 

sequence. We conclude therefore that our measurements of c1 and c2 are reliable 

and retain for W1 the value calculated rather than the nominal value of 10 µs. We 

retain for D1 its nominal value. The uncertainty on D1 must be at least equal to 

the 0.6% relative uncertainty measured for W1 (half a graduation on the scope 

screen) but it also receives absolute contributions (pulse width, rise time, etc) at 

the scale of ~10 ns which are more important. We retain for it an estimate of 

0.2 µs.  

For each bin i of spectrum j we calculate a time δt corrected for the TAC 

non linearity as described in Section 5.1.2. We also correct the number of counts 

in each bin for non linearity as, at large channels (small δt), the number of 

microseconds per channel is larger than at small channels (large δt): we obtain 

this way a measurement of dS/dt accounting for the fact that the bin size is 

affected by the non linearity.  

When spikes occur, they are replaced by linear interpolation between the 

ten lower and ten upper neighbour channels. 
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Figure 6.1 Distribution of the measured value of W1 for Cherenkov runs where the 

nominal value is 10 µs. The mean value is 9.98 µs and the rms value is 0.06 µs.  

 

We then fit together the 62 spectra to the sum of four exponentials. Each 

spectrum is fit between times dt1 and dt2, evaluated separately by eye for each 

spectrum to avoid end effects. 

The sum of four exponentials read:  

Rexp(–R δt)+g0Rshexp(–Rshδt)+φρ+R+exp(–R+δt)+φρ–R+exp(–R–δt). 

Here, ρ+=1–ρ– , ρ– , R, R+ and R– are fixed to their known values. We 

recall their respective meanings: ρ+ and ρ– are the fractions of positive and 

negative muons, R is the cosmic muon rate, R+ is the muon decay rate in vacuum 

and R– is the disappearance rate of negative muons, including both decays and 

capture in water. The fitted parameters are g0 and Rsh for the multimuon 

contribution and φ=fstopη for the electron contribution. While fstop, the fraction of 

stopping muons is the same for all runs, η, the electron detection probability, 

depends on threshold. As seven different threshold values have been used, the 

total number of parameters to be adjusted is 9. The seven φ parameters 

correspond to thresholds of respectively 0.525, 0.7, 1.0, 1.5, 2.0, 2.5 and 3.0 

threshold units. A threshold unit (t.u.) corresponds approximately to 100 mV.  

We expect a muon rate of ~2 kHz and an electron rate at the scale of 

0.5 Hz to 1 Hz at zero threshold and for full detection efficiency (see Table 3.1), 

meaning φ ~250 to 500 ppm. As we shall see below (Figure 6.6), φ~120 ppm at a 

threshold of 0.5 t.u. and the curve has not yet reached its turning point. Assuming 
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that a 0.5 t.u. threshold cuts 50 to 70% of the events, the value at zero threshold 

would be 240 to 400 ppm, meaning a reasonable detection efficiency.  

 

 

Figure 6.2 Correlation between the normalisation constant and the running time: 2-d 

plot (left) and distribution of their ratio (right). 

 

The total number of events in each spectrum is normalized to a common 

value between data and model. The normalization constant, N, is in principle 

proportional to the duration of the measurement, Trun. A check of this relation is 

displayed on Figure 6.2. It is found to be obeyed to a precision better than 10%.  

Indeed, the value of R has been recorded at the beginning of each run with only 

such a precision. While excellent fits have been obtained when using the 

recorded values of R, slightly smaller χ2
 values could be achieved by using a 

threshold-dependent rate evaluated from the best fit N to Trun ratio:  

R’=57.9 –38.0 xthr+10.9 xthr
2
+1.20 xthr

3
.   

These values have therefore been used in the fit rather than the recorded R 

values.  

The χ2
 of the fit is calculated using statistical errors exclusively. The 

results of the best fit are listed in Table 6.1 and illustrated in Figures 6.3 to 6.5. 

Moreover, we noted that the quality of the fit was improved by allowing for a 

drop in the muon detection efficiency for thresholds exceeding 2 t.u.. The best fit 

gives a muon detection efficiency of 38±3% at 2.5 t.u. and of 13±2% at 3 t.u..  

The value of the best fit χ2
 is 1.020 per degree of freedom (of which there 

are 118’185), providing evidence for the quality of the fit and for negligible 
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systematic errors. Figure 6.3 shows the distribution of the ratio between 

measurements and model, with the best Gaussian fit having a σ of 5.3%.  

Figure 6.4 illustrates the agreement between measurement and model for 

each threshold value separately. The measured electron contribution is compared 

with the model in Figure 6.5, showing very good agreement with the nominal 

muon life time. Figure 6.6 displays the dependence of φ on threshold. As 

expected, the sensitivity to electron detection drops to zero when the threshold 

reaches its higher values. 

The best fit value of parameter g0 is (0.79±0.05)×10
–5

 for a decline time of 

1.13±0.04 µs.  

 

Figure 6.3 Distribution of the ratio between measurements and model for the best fit. 

 

Table 6.1 Best fit results of the Cherenkov spectra to a form 

Rexp(–R δt)+g0Rshexp(–Rshδt)+φρ+R+exp(–R+δt)+φρ–R+exp(–R–δt). 
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Figure 6.4 Measured Cherenkov autocorrelation spectra (blue) are compared with the 

result of the best fit (red) for different thresholds (0.525, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0 t.u. 

from up to down). In most cases the blue curve is hidden behind the red curve. 

 

 

Figure 6.5 Measured electron contribution compared with the best fit model prediction. 

In most bins the blue curve is hidden behind the red curve. 

 

Figure 6.6 Dependence of φ on threshold. Error bars are smaller than the data points. 
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6.1.3 Scintillator detector 

Two different arrangements have been used, one using a single scintillator 

plate, the other using two. In both cases the plates, 120×40×3 cm
3
, are made of 

PVT (Polyvinyl Toluene, NE114). They were manufactured over forty years ago 

for an early neutrino experiment at CERN and were given to us as a gift. They 

are seen by 2” 12-dynode PMTs through simple lucite light guides glued on the 

plate sides. In the two-plate geometry, the plates are in optical contact via a thin 

film of vaseline oil and each plate is seen by a single PMT at opposite sides; in 

the single plate geometry, both PMTs are looking from a same side (Figure 6.7). 

As a result of ageing, the scintillators have short attenuation lengths and the 

amount of light detected depends on the distance to the PMTs. In the two-plate 

geometry, this implies a maximal efficiency in the middle of the plates and in the 

single plate geometry, a maximal efficiency at the closer end. 

 

Figure 6.7 Scintillator detectors geometry: two-plate (left) and single plate (right). 

 

Auto correlation spectra have been collected using different thresholds 

and D1 values, but a common W1 value of 10 µs. Fits have been made to a model 

neglecting the possible detection of a second muon from a same shower and the 

occurrence of muon capture, both effects being expected to be negligible. A 

common, unexpected feature of the data collected in each of the two geometries 

is the presence of a strong short life time component having a decay time of the 

order of half a microsecond. The data do not allow for an unambiguous 

identification of what causes it, but it resembles a fluorescence emission excited 

by the primary particle with low probability but high intensity, such that it is well 
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described by a single exponential proportional to the muon term. In practice, 

each spectrum has been divided by the associated running time and fit to a form  

fµ(1+kexp(–t/Tfast)/Tfast)+felexp(–t/Tdec)/Tdec where k and Tfast characterize the 

relative amplitude and decay time of the short life component, fµ is a threshold 

dependent quantity proportional to the detection efficiency of stopping muons, fel 

is the detection efficiency of muon decay electrons and Tdec is the muon decay 

time in vacuum, fixed at its known value. The running times were allowed to 

vary within measurement uncertainties of 10%.  

Good fits are obtained in each geometry. They are illustrated in Figures 

6.8 and 6.9. In the single plate geometry, the detection efficiencies of both muons 

and electrons are nearly constant, displaying only a small drop at the higher 

threshold (4 t.u.), 10% for muons and 3% for electrons. On the contrary, in the 

two-plate geometry, both electron and muon detection efficiencies depend 

strongly on threshold, in a way well described by linear forms f=f0–f’V where V 

is the value of the threshold in threshold units. Normalising fµ=1 for muons at 

zero threshold, we obtain the following results: 

Single plate geometry: 

fµ=1 and fel=1.88±0.04 for V<3 t.u., fµ=0.90±0.14 and fel=1.83±0.08 for 

V=4 t.u.  

Double plate geometry:  

fµ=1–(0.143±0.002)V and fel=(11.9±0.3){1–(0.097±0.007)V} 

The short life component has k=37.0±0.9 in the double plate geometry 

and 9.39±0.07 in the single plate geometry. The respective values of Tfast are 

0.403±0.006 and 0.519±0.004 µs. 

As noted earlier, we expect fel to exceed fµ by approximately one order of 

magnitude, which is the case at zero threshold in the double-plate geometry. In 

the single plate geometry, this number is ~6 times smaller, resulting both from 

the lower stopping probability (typically a factor 3 when allowing for a 

reasonable fiducial volume) and the lower containment of the electron shower. 
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Figure 6.9 Measured scintillator spectra (single plate) are compared with the result of 

the best fit for different thresholds. The left figure contains 4 spectra having thresholds 

of 1 and 2 t.u.. The right panel corresponds to a threshold of 4 t.u.. 
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Figure 6.8 Measured scintillator spectra (double-plate) are compared with the result 

of the best fit for different thresholds (2.5, 5, 1, 6 and 4 t.u.) 
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Figure 6.10 Muon decay curve for the scintillator data. 

 

Combining all scintillator spectra together gives the muon decay curve 

displayed in Figure 6.10. The best fit decay time is 2.14±0.03 µs compared with 

2.197 µs in vacuum: the data can accommodate a capture rate of 1/2.14 –1/2.197 

=(1.2±0.6)×10
–2 µs

–1
 while the capture rate in carbon [19] is       (3.79±0.05)×10

–2 

µs
–1

 ; multiplied by the 44% fraction of µ–
 [20], it gives a capture rate of 

(1.67 ± 0.02)×10
–2

 µs
–1

, compared with (1.2±0.6)×10
–2

 µs
–1

 measured here.   

 

6.2 Charge spectra 

        6.2.1 Introduction 

The second signal of a correlated pair, of which the charge is recorded in 

the ADC, is either an electron (requiring that the first signal was a detected 

stopping muon) or a muon (minimum ionising in most cases). Both components 

depend in different ways on threshold and delay. Analysing data collected at 

different thresholds and delays should therefore allow disentangling the 

respective contributions of electrons and muons to the recorded charge 

distributions. The present section addresses this problem.  

 

6.2.2 Cherenkov detector 

 A total of 57 runs have been recorded, of which three have been ignored 

because the Cherenkov PMT high voltage was unstable. Merging runs having 

same threshold and D1 values leaves a total of 48 runs of which 5 are taken with 

different PMT high voltages and are discarded. Another one shows evidence for 
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instabilities resulting in an important smearing of the charge distribution and is 

also discarded.  

We use the hodoscope trigger data (bracketing the Cherenkov tank) to 

scale the 42 remaining runs to a common VEM value of 325 ADC channels. The 

result is shown in Figures 6.11 and 6.12, which display the mean values, and 

respectively rms values, of the recorded Cherenkov spectra. The superposition of 

all normalised spectra is illustrated in Figure 6.13 for PMT1, PMT2 and 

(PMT1+PMT2)/2 separately. The rms to mean ratio for the latter is now ~26%, 

corresponding to 14 to 15 photoelectrons per VEM. The value obtained for three 

PMTs (Section 2, Figure 2.18) was 20±1, which would mean 13.3±0.7 for two 

PMTs. We therefore retain 14±1 photoelectrons per VEM as our best estimate for 

the present data. 

 

Figure 6.11 VEM calibration: distribution of the mean charge measured in PMT1 

(black), PMT2 (blue) and their average (red) as a function of run number. Data are 

plotted before merging and include the early runs with different PMT high voltages. 

The left panel is before scaling and the right panel after. 

Figure 6.12 VEM calibration: distribution of the rms charge measured in PMT1 

(black), PMT2 (blue) and their average (red) as a function of run number. Data are 

plotted before merging and include the early runs with different PMT high voltages. 

The left panel is before scaling and the right panel after.   
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Figure 6.13 VEM calibration: superposition of all normalised spectra for PMT1 (black), 

PMT2 (blue) and their average (red). 

 

Having fixed the charge scale using the VEM calibration described above 

we now compare the data with a dependence on threshold and delay having the 

following form: 

{ }el
kjikijijk F)/Dexp(FNS τλµ −+=                        (6.1) 

Here i labels the threshold, j the delay and k the charge bin. Ni j is a 

normalisation constant, one for each spectrum; λi accounts for the fact that when 

the threshold increases, so does the fraction of stopping muons (the threshold 

applies to both the start and stop signals) and therefore of possibly detected decay 

electrons; the exponential term accounts for the exponential decrease of the 

electron contribution as a function of delay (D1, here written Dj to account for its 

different values and τ is taken equal to 2 µs in order to account for capture); Ci 

describes the cut-off at low charges due to the discriminator threshold.  

Rather than fitting the normalisation constants for each independent 

charge distribution, we set it to unity and normalise the measured distributions in 

the high charge region where electrons do not contribute. The data normalised in 

this fashion are displayed in Figure 6.14 (left).  

The cut-off function Ci is taken of the form (1+exp[–(x–xci)/∆ci])
–1

 where 

xci and ∆ci are proportional to threshold: xci=acthi, ∆ci=bcthi, thi being the nominal 

threshold value. It switches from 0 to 1 around x=xci over a width measured by 

∆ci. We find that this form describes well the data to a precision of ~0.06 VEM. 

The best fit values of ac and bc are 0.18±0.02 VEM and 0.042±0.001 VEM 

respectively. 

ADC channels ADC channels ADC channels 

N
o
rm

al
iz

ed
 A

D
C

 c
o
u
n
ts

N
o
rm

al
iz

ed
 A

D
C

 c
o
u
n
ts

N
o
rm

al
iz

ed
 A

D
C

 c
o
u
n
ts



 83 

The best fit values of the λ parameters are displayed in the right panel of 

Figure 6.15 as a function of threshold and listed in Table 6.2. Above a threshold 

of 2 threshold units, electrons do no longer contribute. The sharp decrease of the 

λ parameters as a function of threshold illustrates the difficulty of the 

measurement: the evaluation of the electron charge distribution rests fully on the 

low threshold data; the higher threshold data are only good at fixing the muon 

charge distribution. The similarity of the dependence on threshold of the 

λ parameters and of the φ parameters (Figure 6.6, reproduced in the left panel of 

Figure 6.15) is remarkable. 

 

 
 

Figure 6.14 Measured charge distributions (left panels) and best fit results (right panels) 

displayed for each threshold value independently. 

T=0.5 t.u. T=0.5 t.u. 

T=0.7 t.u. T=0.7 t.u. 

T=1.0 t.u. T=1.0 t.u. 

T=1.5 t.u. T=1.5 t.u.

T=2.0 t.u. T=2.0 t.u. 

T=2.5 t.u. T=2.5 t.u. 

T=3.0 t.u. T=3.0 t.u. 
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The result of the best fit of the form (6.1) to the measured spectra is 

displayed in Figure 6.14 (right). The quality of the fits implies typical relative 

uncertainties of 1% to 5% on the measured distributions. Figure 6.16 displays the 

muon distribution F 
µ 

and compares it with the data after subtraction of the 

electron contribution. It agrees qualitatively with the inclusive distribution 

measured in PAO Cherenkov detectors [12, 15]. The electron distribution is fit to 

a form x
2
(3−2x), known to describe the energy distribution of electrons produced 

by a muon decaying at rest. Here, x is the ratio between the electron energy and 

half the muon rest mass, 53 MeV/c
2
. Its value in VEM, corresponding to the 

upper end point of the energy distribution, is adjusted by the fit, after allowing 

for a smearing of the measured charges by a Gaussian having a σ equal to σel. The 

best fit value of σel is 34±6% and of the end point 0.42 VEM, while subtracting 

the muon contribution from the data gives instead an end point value of 0.50 

VEM. This disagreement may be due to the inadequacy of the form 6.1 and/or to 

the insufficient quality of the data. Adjusting the two distributions to the average 

of the two values, 0.46, produces the result displayed in the left panel of Figure 

6.17.  

 
 

Figure 6.15 Dependence on threshold of the φ (left panel) and λ (right panel) 

parameters. 

 

Another approach is to remark that the larger contributions to χ2
 are from 

regions where the spectrum varies rapidly with charge. Adding to the 

experimental uncertainty a term proportional to the derivative of the spectrum 

with respect to charge takes care of this anomaly and results in an end point of 

0.44 VEM, this time in good agreement with the value found in the muon 

λλ λλ
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subtracted data. The result is displayed in the right panel of Figure 6.17. We also 

tried to improve the form 6.1 by writing in the expression of the cut-off function 

xci=ac(thi–th0), ∆ci=bc(thi–th0), th0 being an adjustable parameter. The best fit 

gives th0=0.05, ac=0.17 instead of 0.18 and bc=0.038 instead of 0.042 while the 

end point is now 0.39 VEM.  

 

 

Figure 6.16 Muon charge distribution: the best fit F
µ
 is shown in red and the data, after 

subtraction of the electron contribution, in blue. The arrow indicates the VEM value. 

 

 
 

Figure 6.17 Electron charge distribution: the best fit F
el
 is shown in red and the data, 

after subtraction of the muon contribution, in blue. The arrow indicates a charge of 

⅓VEM. Left panel: the charge scales of both distributions have been previously 

adjusted by ~8% as described in the text. Right panel: experimental uncertainties have 

been increased to account for rapid variations as a function of charge and the cut-off 

function has been refined as described in the text. No rescaling needs to be done in that 

case. The arrow indicates the ⅓VEM value. 
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Many other attempts at improving the fit have been made but did not 

produce spectacular improvements. They always gave parameters that did not 

much differ from those summarized above but provided a reliable estimate of the 

robustness of our result. Taking these in due account, we retain as final value of 

the end point 0.40±0.05 VEM.  

The higher part normalization of the measured spectra mentioned above 

consists in summing these from channel 550 to 800, giving a sum Σ0. To the 

extent that electrons do not contribute to the higher part of the spectrum, we 

expect Σ0 to be simply related to the running time RT: the values of the ratio 

Σ0/RT are listed in Table 6.2. Also listed in the table, for each threshold 

separately, are the mean and rms values of Σ0/RT.  

Figure 6.18 displays the dependence of <Σ0/RT> on threshold and on D1 

after averaging over D1 or threshold respectively. The independence on D1 gives 

evidence, as expected, for the high charge region of the spectrum to be 

independent from the electron fraction. As expected, values averaged over 

threshold are delay independent while values averaged over delay decrease with 

threshold. Conversely, the rms values are small for a given threshold but large for 

a given delay. The dependence on threshold reflects the fact that the coincidence 

rate is proportional to the single muon rate: it measures the integral of the muon 

spectrum at low charges. 

We repeated the above analysis by requiring that the first signal of the pair 

of Cherenkov coincidences producing the trigger be associated with a signal in 

the upper hodoscope. As can be seen from Figure 5.13, a coincidence between 

such a signal and each of the scintillators of the upper hodoscope is tagged in a 

pattern unit (PU3). The charge distributions satisfying this condition are only a 

fraction f of those analysed earlier but the result of the final fit is essentially the 

same. Table 6.3 lists the values of the fraction f as a function of threshold and 

delay. On average, f is independent from delay but decreases with threshold 

(Figure 6.19) 
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Table 6.2 Main features of the Cherenkov charge spectra using the Cherenkov trigger. 
 

Runs Thr D1 λ Σ0/RT <Σ0/RT> Rms(Σ0/RT) 

17 0.50 1.0 – 2.68 – – 

26 0.5 1.57 

23 1.5 2.18 

1 2.0 1.92 

39 2.5 1.78 

6 

0.55 

5.0 

0.96(1) 

2.19 

1.93 0.25 

25 0.5 1.65 

24 1.5 1.59 

40 

0.70 

2.5 

0.705(10) 

1.54 

1.59 0.05 

18 0.5 1.48 

16 1.0 1.31 

20 1.5 1.41 

22 2.0 0.83 

7 

1.00 

5.0 

0.52(1) 

1.40 

1.32 0.22 

27 0.5 0.79 

19 1.0 0.84 

31 1.5 1.06 

35 2.0 1.13 

42 2.5 1.10 

46 3.0 1.08 

9 

1.50 

5.0 

0.23(2) 

1.15 

1.02 0.13 

28 0.5 0.86 

15 1.0 0.97 

32 1.5 0.87 

36 2.0 0.98 

43 2.5 0.78 

47 3.0 0.90 

8 

2.00 

5.0 

0.05(5) 

0.97 

0.90 0.07 

29 0.5 0.79 

30 1.0 0.59 

33 1.5 0.75 

37 2.0 0.86 

44 2.5 0.83 

48 3.0 0.77 

10 

2.50 

5.0 

0 

0.61 

0.74 0.10 

14 0.5 0.68 

13 1.0 0.31 

34 1.5 0.61 

38 2.0 0.71 

45 2.5 0.64 

12 3.0 0.68 

11 

3.00 

5.0 

0 

0.80 

0.63 0.14 
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Figure 6.18 Left panel: dependence on D1 of <Σ0 /RT> averaged over threshold. Right 

panel: dependence on threshold of <Σ0 /RT> averaged over D1. The error bars shown 

are not uncertainties but rms values.           

 

Figure 6.19 Left panel: dependence on delay of f, averaged over threshold; Right panel: 

dependence on threshold of f, averaged over delay. Statistical error bars are smaller than 

the dots. 
 

Table 6.3 Fraction  f (%) of data having the upper hodoscope on 

 

Delay (µs) 
Threshold (t.u.) 

0.5 1.0 1.5 2.0 2.5 3.0 5.0 

0.55 17.7 - 18.3 17.3 18.5 - 18.5 

0.70 17.8 - 18.5 - 18.5 - - 

1.0 18.5 18.6 18.6 18.5 - - 19.2 

1.5 - - 18.6 17.2 18.0 18.1 19.1 

2.0 18.1 18.1 17.7 16.8 17.2 17.6 18.7 

2.5 16.9 17.0 16.7 16.0 16.4 16.9 17.8 

3.0 16.5 16.4 15.5 16.2 15.4 16.6 16.8 
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6.2.3 Scintillator detectors 

 A total of eight runs have been recorded in the double plate geometry and 

five in the single plate geometry.  

We perform on these data an analysis similar to that performed on the 

Cherenkov data. However, as the number of recorded runs is now much smaller, 

we must limit our ambition to a less detailed study. As in the Cherenkov case, we 

use the form of relation 6.1 to model the data: Si j k=Ni j Ci {
µ

kF +λi exp(–

Dj /τ)
el
kF }. We recall that i labels the threshold, j the delay and k the charge bin. 

Ni j is a normalisation constant, one for each spectrum; λi accounts for the fact 

that the threshold acts differently on the detection efficiency of muons and on 

that of electrons; the exponential term accounts for the exponential decrease of 

the electron contribution as a function of delay (D1, here written Dj to account for 

its different values and τ is taken equal to 2.2 µs as capture can be neglected); Ci 

describes the cut-off at low charges due to the discriminator threshold.  

As in the Cherenkov case, rather than fitting the normalisation constants 

for each independent charge distribution, we set it to unity and normalise the 

measured distributions in the high charge region where electrons do not 

contribute.  

The cut-off function Ci is taken of the same form (1+exp[–(x–xci )/∆ci ])
–1

 

where xci and ∆ci are nearly proportional to threshold: xci=ac(thi−0.05), 

∆ci=bc(thi−0.05), thi being the nominal threshold value. It switches from 0 to 1 

around x=xci over a width measured by ∆ci. We use the same values of xci , ∆ci as 

found in the Cherenkov case, 11.1 and 2.47 ADC channels respectively, but 

allow for an overall scale factor resulting from minor changes in the electronics, 

which the best fit finds equal to 0.41 (double plate geometry) and 0.38 (single 

plate geometry).  

As the ratio between the electron and muon detection efficiencies do not 

depend much on threshold, at strong variance with the Cherenkov case, we 

approximate it by a linear form, λi=aλthi+bλ with aλ and bλ determined by the best 

fit; aλ= −0.58±0.17 and bλ=12.6±0.6 (double plate geometry) and aλ=0.71±0.16 

and bλ=6.7±0.4 (single plate geometry).  
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 The resulting muon and electron distributions are displayed in 

Figure 6.20. 

It is remarkable that reasonable fits are obtained while ignoring the short lifetime 

component: it shows up in a spectacular way in the time distributions but is 

diluted in the charge distributions and its contribution can be neglected.   

 

 

 
 

Figure 6.20 Left panel: muon charge distribution (the red arrow shows the peak 

position for vertical feed-through muons); Right panel: electron charge distribution. 

Note the different scales (given in ADC channels). The single plate results are shown in 

blue and the double plate results in red. 

 

On average, with respect to muons, electrons deposit more energy in the 

single plate configuration than in the double plate. Indeed, the PMT high 

voltages were increased by ~150 V when switching from the double plate to the 

single plate geometry in order to keep the straight through muon mean charge 

(hodoscope trigger) at the same number of ADC channels. This reflects on the 

left panel of Figure 6.20 where the two inclusive muon distributions have the 

same mean in spite of being associated with different track lengths (that of the 

double plate geometry is twice that of the single plate geometry). As the left 

panel of Figure 6.20 shows, the electron mean charge increases by about a factor 

2 when moving from the double plate to the single plate geometry. This means 

therefore that the electron signals, when referred to a same calibration, are about 
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the same in the double plate and single plate geometries while the muon signals 

are roughly in a ratio of 2.  

The functions 
el
kF  and 

µ
kF  are defined in such a way that their maximum 

value is one; they are of the form 
( )2bk

e
a

ck
−

where the normalisation factor c is 

taken equal to 0.066 and 0.031. The integral of 
el
kF  in the single plate geometry 

is therefore twice what it is in the double plate geometry. The probability of 

having an electron as second signal compared to that of having a muon is given 

by the product of this integral by λi. As λi is about half for the single plate 

geometry than for the double plate geometry (6.7 instead of 12.6), the probability 

of having an electron as second particle, relative to the probability of having a 

muon, does not depend strongly on the geometry. 
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7. Results and interpretation  

        

7.1 A simple model 

In the present section, we compare the Cherenkov results obtained in the 

preceding sections with the predictions of simulations. As was made clear from 

the analyses presented in the preceding sections, the contribution of muon pairs 

from a same shower can be neglected. We therefore use a simple model that 

considers only two kinds of events: either a pair of uncorrelated muons (from two 

independent showers) or a stopping muon decaying in the water volume.  

In both cases, muons are given a kinetic energy E having a distribution of 

the form dN/dE=N0 exp(−E/Emean ) where Emean is an adjustable parameter, and a 

zenith angle θ having a distribution [8] dN/dθ=N0 cos
2θ(1−0.108 sin

2θ) between 

0
o
 and 90

o
. Here, N is the muon flux per unit of solid angle, of area (normal to the 

trajectory) and of time. The charge is calculated in VEM using a Poisson 

distribution of photoelectrons, the mean number of photoelectrons per VEM 

being an adjustable parameter, υ. The effect of the threshold kthr (measured in 

threshold units) on a charge q is simulated by a cut of the form 

(1+exp((q−qthr )/∆qthr ))
−1

 where qthr and ∆qthr depend linearly on kthr. Muons in 

muon pair events are separated by a time t uniformly distributed between 0 and 

the width of the time window, 10 µs.  

Muon decays (Figure 7.1) are simulated as described in Section 3.2. The 

parent muon is generated as in the case of muon pairs and its track length l is 

required to exceed 11 cm, below which a stopping muon does not emit any 

Cherenkov light. The position xstop of the stop on the track is taken with a uniform 

distribution between the track exit and a point shifted by 11 cm from the entrance 

end inside the water volume, each value of xstop being given a weight accounting 

for its likelihood, namely dN/dxstop=(dN/dE)/(dxstop /dE) where dN/dE has the 

exponential form given above and dxstop /dE has the form given in Section 3.2.  
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Figure 7.1 Simulation of muon decays: geometry. 

 

The charge of the PMT signals associated with the Cherenkov light 

emitted by an electron shower of energy Edecay is averaged over the electron 

energy and direction and measured by an adjustable fiducial volume parameter Λ, 

such  that it corresponds to an effective energy Edecay(1−0.5l1/Λ)(1−0.5(l−l1)/Λ). 

Here, l1 measures the distance between the stop position and the exit point of the 

muon trajectory. Similarly, l−l1 measures the distance between the stop position 

and the entrance point of the muon trajectory. The parameter Λ is therefore a 

measure of the shower size and its scale is the radiation length (36 cm in water). 

The adjustable parameter Edecay=xEend is taken with a standard muon decay 

distribution (dN/dx=6x
2
−4x

3
, see Section 3.2) having its end point (x=1) at Eend 

and smeared by a Gaussian having a σ=σel, where both Eend and σel are adjustable 

parameters measured in VEM.  

The muon decay time distribution is taken exponential with an effective 

decay time of 2 µs accounting for muon capture in water and the decay electron 

is required to be emitted within the accepted window (width W1 and delay D1).  

 

7.2 Comparison with the data 

The charge and time distributions measured using the Cherenkov detector 

have been fitted simultaneously to the above model. Acceptable fits could only 

be obtained at the price of a number of modifications: 

1) It was necessary to modify the model in order to reproduce the muon 

distribution. Our choice has been to allow for a dependence on zenith angle θ of 
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the detection efficiency of Cherenkov light: the charge associated with the 

Cherenkov emission of the muon is measured by the track length l in water 

multiplied by a factor exp(−σ(1−cosθ)/cosθ) where σ is an adjustable parameter. 

2) It was necessary to use a cut-off function having a relatively sharp start 

and a much slower tail. This was achieved by dividing ∆qthr by 5 when q is 

smaller than qthr. Figure 7.2 displays the modified charge dependence of the cut-

off function for different values of kthr. 

3) The uncertainties in each bin were taken as the quadratic sum of the 

statistical uncertainty and a systematic uncertainty taken to be 0.7 permil 

(respectively 0.9 permil) of the integrated time (respectively charge) distributions 

in order to obtain a value of χ2
 similar to the number of degrees of freedom and 

to give equal weights to the time and charge data.  

 

The results are listed in Table 7.1 and are briefly commented below. 

 

Table 7.1 Best fit results to time and charge data using the simple model. 
 

Parameter Emean (GeV) σ υ (p.e./VEM) Λ (cm) Eend (VEM) σel 

Best fit result 4.2 0.63 4.7 24 0.08 0.03 

 

 

The mean value of the muon kinetic energy, Emean=4.2 GeV, is in good 

agreement with expectation [10]. It is weakly correlated with the value of σ=0.63 

that implies that at 45
o
 zenith angle the detection efficiency of Cherenkov 

photons is a factor 0.77 times that for a vertical incidence muon.  

While the value of Λ, 24 cm is at the scale of the radiation length in water 

(36 cm) as expected, the value of υ, 4.7 photoelectrons per VEM, is unexpectedly 

low. It is obtained here for two photomultiplier tubes, meaning ~7 for three as in 

the PAO configuration or in Figure 2.19. It is a factor ~3 smaller than obtained 

from vertical feed-through muons (see Section 2.4.3) and would require an 

important deterioration of the resolution in the low charge regime, which would 

have probably to be blamed on electronics noise and high frequency pick up on 

the PMT bases and signal cables. The values of Eend and σel are strongly 

correlated, with Eend+σel~0.11 VEM, a result of the fact that the fit is only 
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sensitive to the tail of the charge distribution, as was already commented in 

Section 6.2.  

In spite of the above modifications that were found necessary, the quality 

of the fit was not good, in particular at low charges. However, the comparison of 

the data with such a simple model has been useful at revealing its weaknesses 

and at suggesting improvements that are reported below. 

 

 

 

Figure 7.2 Charge dependence (VEM) of the threshold cut-off functions for threshold 

units of respectively 0.5, 1.5 and 2.5. 

 

7.3 Including a soft component 

A major problem of the simple model used in the previous paragraph is its 

inability to reproduce what was meant to be the muon contribution. We know 

from Figure 3.6 that the charge distribution expected for muons, including or not 

stopping muons, is not expected to peak at low charges while the data require a 

 so-called muon contribution that does, as was made clear in Figure 6.16. Figure 

7.3 below illustrates this discrepancy. The simulated charge distribution, even 

after having been smeared to account for photoelectron statistics (here using 

14 photoelectrons per VEM), does not display any peaking at low charges at 

variance with the measured distribution.  

Indeed, a low charge component, the so-called soft component, which is 

not taken into account in the simple model, has been known to exist for many 

years [21] and is essentially composed of soft electrons, positrons and photons (it 

is therefore an abuse of language to include it in the “muon” contribution, one 
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should strictly speak of a “non-decay-electron” contribution). As it is not 

penetrating, it does not show up whenever a coincidence between two different 

detectors is required; however, in the present case where the coincidence is 

between two PMTs looking at the same water volume, there is no such 

suppression. As shown in Figure 7.4, it is also present in the PAO data [15], 

however at a different rate because of the different altitude (1400 m rather than 

sea level). 

 

 

 
 

Figure 7.3 Muon charge distributions as obtained from a simple simulation (left, VEM 

units) and as measured (right, 1 VEM=65ADC units, see Figure 6.16). Left: blue is 

before Poisson smearing and red after using a value of 14 photoelectrons per VEM.  

 

 
 

Figure 7.4 Histogram of signals from one PMT in a PAO Cherenkov detector. A 

threshold of 10 to 20 channels cuts off the data at low charges.  

 

We have modified the simple model used in the preceding paragraph to 

include such a soft component. We use an exponential dependence on charge q 

of the form dN/dq=qsoft
–1

exp(–q/qsoft) where qsoft is an adjustable parameter. We 
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use as a second adjustable parameter the fraction fsoft of the inclusive rate taken 

by the soft component.  

 

7.4 Threshold cut-off functions 

The simple model has revealed the inadequacy of applying a narrow 

threshold cut-off function to the analysed signal. The reason is obvious: the 

threshold does not apply to the analysed signal, which is the sum of two PMT 

signals, but to each of these individually. To understand the effect, one may 

illustrate it with a simple example as is done in Figure 7.5. Assume that each 

phototube looks at a same q signal, each with the same Poisson statistics in terms 

of photoelectrons per VEM and independently subject to a sharp cut at q0. The 

resulting summed signal is affected by the threshold cuts in a way that is 

illustrated in Figure 7.5 by displaying cut-off functions defined as the ratios 

between the observed sum signal and what it would be in the absence of cut. 

While there is no signal surviving the cut below 2q0, as expected, the sum signal 

rises smoothly and reaches its maximum only when the threshold is low enough 

not to affect any of the two individual PMT signals. In general, the cut-off 

functions depend therefore on the shape of the signal.  

 

 

 
 

Figure 7.5 Cut-off functions for signals of respectively 0.1 (left), 0.2 (middle) and 0.5 

(right) VEM detected with a photoelectron statistics of 20 photoelectrons per VEM. In 

each case curves have been drawn for ten sharp threshold values, from 0.01 to 0.10 

VEM. Large fluctuations resulting from the finite Monte Carlo statistics are seen in 

regions that are not much populated by the signal, but they are irrelevant to the point 

being made here. 
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Of course, if the two signals were strictly identical, a sharp cut-off on each 

of them would produce a sharp cut-off on their sum. But when, as is the case 

here, the two signals are not strongly correlated, a slow cut-off function results 

on the sum. This effect, which indeed resembles that revealed by the simple 

model (Figure 7.2) has been implemented in the simulation by assuming that the 

number of Cherenkov photons reaching the PMTs is equally shared between 

them and applying Poisson statistics and threshold cut-off to each of them 

separately. The individual threshold cut-off functions have been assumed to rise 

linearly between qthr–∆qthr and qthr+∆qthr. The slow effective rise of the cut-off 

functions on the sum signals are now largely reproduced naturally and reasonable 

values of ∆qthr are obtained although a sharp cut-off is excluded. However, the 

best fit requires a value of qthr that does not quite cancel for zero nominal 

threshold; hence parameterizations as a function of kthr (in threshold units) of the 

form qthr=athr+bthrkthr and ∆qthr=cthrkthr. 

 

7.5 Dependence on zenith angle 

Another lesson of the simple model is the need for a dependence on zenith 

angle of the light collection efficiency. In order to investigate what to expect in 

this context, we simulate the physics of light collection, which we parameterize 

by two parameters: a light attenuation length in water, Λatt and a diffusion (or 

reflection) coefficient η describing the ratio between the diffused (or reflected) 

and incident light on wall encounters [22]. We use a reasonable guess as default 

values: Λatt=20 m and η=0.85. We simulate both Lambertian diffusion on the 

tank walls (as is probably the case for the PAO where the walls are made of 

Tyvek) and specular reflection (that can probably no longer be neglected in the 

VATLY case where the walls are coated with aluminized Mylar).  

It must be first remarked that in the case of a perfect optical cavity, Λatt=∞ 

and η=1, any Cherenkov photon emitted along a muon track ultimately escapes 

into one of the PMTs. If 3N photons are emitted and if there are 3 PMTs, each 

PMT receives therefore N photons. In such a case, the signal in each PMT is 

strictly proportional to track length and one does not expect any dependence of 

the light collection efficiency on zenith angle. In practice, however, Λatt takes a 
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finite value and η is smaller than unity. The detected signal becomes        

N
k 
exp(–l/Λatt ) where k is the number of wall reflections (or diffusions) and l the 

optical path that precede the escape into the PMT photocathode. Back to the case 

of a perfect optical cavity, the number of photons detected for k<kmax and/or 

l<lmax is now smaller than N and its ratio to track length may very well become 

zenith angle dependent. Another way to say it is that in the case of a perfect 

optical cavity, while the time integral of each signal is N, its duration may be 

time dependent: all photons are indeed ultimately collected but the optical path 

length and the number of reflections/diffusions per track length that it takes to 

achieve it may well be zenith angle dependent.  

An effect that produces a dependence of the light collection efficiency 

over zenith angle is the existence of direct light (Figure 7.6). It results from the 

fact that it becomes possible for Cherenkov light to reach the PMTs without any 

diffusion or reflection when the zenith angle exceeds 41
o
 (cosθ=0.75). Figure 7.7 

displays the distribution of the number of diffusions or reflections that occur 

before reaching the PMTs for different intervals of cosθ. It shows clearly how for 

small zenith angles direct light (no preceding diffusion or reflection) is relatively 

suppressed, while it becomes more and more important when the zenith angle 

increases. 

In general, in the case of a non-perfect optical cavity, one may then expect 

a zenith angle dependence of the light collection efficiency. However, to the 

extent that the number of photons effectively collected in the PMTs is much 

smaller than the total number of Cherenkov photons produced, this dependence 

cannot be very important. Indeed, in such a case, each Cherenkov photon has a 

small probability P, in principle dependent on cosθ, to be detected after a given 

optical length lmax and a given number of reflections/diffusions kmax. But the 

average values of l and k will be only slightly smaller than lmax/2 and kmax/2 

respectively to the extent that only few photons have been collected before 

reaching lmax or kmax. As the effective values of lmax and kmax are defined soleley 

by Λatt and η, they do not depend on cosθ. Moreover, as the light collection 

efficiency is completely defined by the average values taken by l and k, it will 

not depend on cosθ either.  This is indeed what the simulation predicts: Figure 



 100 

7.8 displays the dependence on zenith angle of the mean number of 

photoelectrons per VEM for Λatt =2000 cm and η=0.85. In such a case, the light 

is attenuated by 1% after ~28 reflections/diffusions or after ~9200 cm optical 

path. The dependence on cosθ is indeed quite small, particularly in the case of 

Lambertian diffusion, the main effect being that of direct light in the case of 

specular reflection. 

 
 

Figure 7.6 Direct light: illustration of the zenith angle dependence of the light 

collection efficiency. For muons (full lines) having a zenith angle in excess of the 

Cherenkov angle (41
o
, red) photons (dotted lines) can reach the PMT directly. 

Otherwise (blue) a minimum of one reflection or diffusion is required.  

 

Figure 7.7 Left: distribution of the number of diffusions preceding detection by the 

PMTs for cosθ= 0.3 to 0.4 (blue), 0.5 to 0.6 (green), 0.7 to 0.8 (magenta) and 0.9 to 1 

(red). Right: Relative occurrence (%) of respectively zero (black) and one (red) 

diffusions preceding detection by the PMTs as a function of cosθ. 

 

Figure 7.8 Dependence on cosθ of the mean number of photoelectrons per VEM for Λatt 

=2000 cm and η=0.85. The black curve is for Lambertian diffusion and the red curve 

for specular reflection. A zenith angle dependence of the form 1–0.10sin
2θ, as required 

by the best fit, is shown as a blue curve. 
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7.6 Comparison between data and simulation 

Figures 7.9 and 7.10 compare the data with the best fit result of the 

simulation. While the fit is globally very good, one notes that some 

disagreements subsist in a few cases of charge distributions near threshold.  
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Figure 7.9 Charge distributions measured (blue) and predicted (red) for different delays 

and thresholds. Each panel is labeled by its threshold T (in threshold units) and its delay 

D (in microseconds).  
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Figure 7.10 Time distributions measured (blue) and predicted (red). Each panel is 

labeled by its threshold T (in threshold units) and its delay D (in microseconds). 
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The crudeness of the model used to simulate the effect of threshold, and 

the sensitivity of the quality of the fit to a precise description of the cut-off 

functions, are one reason. Another reason is the crudeness of the description of 

the soft component by a simple exponential. However, rather than restricting the 

fits to a charge range sufficiently above threshold to guarantee a perfect fit, we 

prefer to extend the fit to the whole charge range and accept some small 

disagreements near threshold. The values obtained for the parameters that have 

been adjusted are listed in Table 7.2. The uncertainties that are quoted neglect 

correlations between the parameters: they simply correspond to the shift of the 

parameter with respect to the best fit value such that the χ2
 per degree of freedom 

(of which there are 10199) increases by 1%. Properly speaking, they are 

therefore rather indicators of the sensitivity of each particular parameter to the 

quality of the fit. We now comment each of these in turn: 

– The number of photoelectrons per VEM is now υ=13.0±0.9 in very good 

agreement with our earlier estimate of 14 obtained from the width of the 

calibration curves. This number is really an effective number of photoelectrons 

per VEM, including other effects that might cause a smearing of the charge 

measurement. It is rewarding to find that the effect is consistently described by a 

single value in both the VEM region and in the low charge regime (stopping 

muons and decay electrons). 

– The value of the end point of the charge distribution of decay electrons 

is Eend=0.275±0.018 VEM. We note that it is no longer necessary to smear this 

distribution beyond the natural smearing resulting from photoelectron statistics. 

The resulting smeared distribution is displayed in Figure 7.11. This result is 

consistent with the value obtained in PAO data, where the mean decay electron 

charge is 0.12 VEM. 

− The soft component is described by fsoft=0.795±0.012 and 

qsoft=0.32±0.02 VEM. The high value of fsoft is somewhat misleading to the 

extent that charges smaller than ~0.1 VEM are cut by the threshold. Indeed, 

Figure 7.11 displays the soft component in the range where it is observed and 

where it can be compared with the electron and muon contributions. It must be 

remarked that we have no way to tell the difference between a real and a fake soft 
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component contribution. The requirement of a coincidence between two 

photomultiplier tubes is a protection against electronic noise, of which the 

contribution to the soft component cannot exceed ~10%. However, a small light 

leak is an ideal candidate to fake such a soft component: the requirement of a 

coincidence does not protect against it. The argument against a significant light 

leak contribution is the independence of the trigger rate on ambient light, a large 

fraction of the data having been collected during the night. But this example 

illustrates the weakness of the trigger for discriminating against very low signals, 

the large water volume implying a high detection efficiency. Another point of 

relevance is the sensitivity to soft electrons: they have significant mean free paths 

in water and their very low mass allows for Cherenkov radiation emission down 

to MeV kinetic energies.  While both the value of the trigger rate and the 

comparison with similar data taken with PAO tanks indicate that the soft 

component detected here is not too heavily contaminated by spurious sources, we 

must keep these arguments in mind and refrain from quoting a value for the soft 

component rate. Such a measurement would require a different set-up, better 

adapted to the task.  

– The value taken by Λ, 36±6 cm, is (by chance) precisely equal to the 

value of the radiation length in water, however with a large error; indeed, this 

parameter is only an ad hoc way to simulate the fiducial volume effect and there 

is no reason for it to be precisely equal to the radiation length although it is 

expected to be of the same order of magnitude. 

– The parameters describing the dependence of the cut-off function on kthr 

are athr=0.022±0.002 VEM, bthr=0.0495±0.0013 VEM and cthr=0.035±0.006 

VEM per threshold unit. The value of cthr deviates significantly from zero, 

although much of the smearing effect is naturally produced by the mechanism 

described in sub-section 7.4. 

– The fit was performed by neglecting a possible dependence of the light 

collection efficiency on zenith angle (see subsection 7.5 and Figure 7.8). 

Assuming that the optical properties of the tank are better described by a 

Lambertian diffusion than by a specular reflection (although, as already 

mentioned, we expect an intermediate situation) and including a dependence on 
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zenith angle of the form 1– ξ sin
2θ predicts a value ξ=0.10±0.04, in good 

agreement with the analysis performed earlier and suggesting that Λatt =20 m and 

η=0.85 are indeed sensible estimates of the optical quality of the tank cavity. 

– The mean muon kinetic energy is Emean=
4.0
3.0

0.4 +
−  GeV, in excellent 

agreement with the expected value [10]. It is remarkable that the data are able to 

measure it properly in such an indirect way. 

 

Table 7.2 Best fit values of the model parameters 

 

Parameter Symbol Value (error) 

Soft component probability fsoft 0.795 (0.012) 

Soft component width (VEM) qsoft 0.32 (0.02) 

Decay electron end point (VEM) Eend 0.275 (0.018) 

Shower size (cm) Λ 36 (6) 

Mean muon kinetic energy (GeV) Emean 

4.0
3.0

0.4 +
−  

Number of photoelectrons per VEM υ 13.0 (0.9) 

Threshold offset (VEM) athr 0.022 (0.002) 

Cut-off slope (per threshold unit) bthr 0.0495 (0.0013) 

Cut-off width (per threshold unit) cthr 0.035 (0.006) 

Light collection efficiency parameter ξ 0.10 (0.04) 

 

 

Figure 7.11 displays the respective contributions of the soft component, 

muons and decay electrons to the charge distribution at low threshold and for 

both a small and a large value of the delay. It illustrates the difficulty of the 

measurement, the decay electron component becoming negligible for charges in 

excess of ~0.5 VEM, and being largely hidden behind the soft component. Figure 

7.12 displays the charge distribution associated with Cherenkov photons emitted 

by stopping muons that produce detected decay electrons. The figure is drawn for 

the lowest threshold value and a delay D1=0.5 µs. Its shape is nearly the same for 

a delay of 5 µs (but its amplitude is of course much smaller). The mean value of 

the charge distribution displayed in Figure 7.12 is 0.54 VEM. Such a small value, 

although larger than that of the electron distribution, adds to the difficulty to 

detect electrons from muon decays when using a Cherenkov detector.  
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Figure 7.11 Respective contributions of the soft component (red), decay electrons 

(black) and cosmic muons (blue) for the smallest threshold value (0.5 t.u.) and 

respective delays of 0.5 µs (left) and 5.0 µs (right). 

 

 
 

Figure 7.12 Charge distribution (VEM) associated with stopping muons that produce a 

detected decay electron for a threshold of 0.5 t.u. and a delay D1 of 0.5 µs. 

 

7.7 Decoherence and shower size 

In Section 6.1.2 we established that the best fit to the time distributions 

measured in the Cherenkov detector to a form  

Rexp(–Rδt)+g0 Rsh exp(–Rshδt)+φρ+ R+ exp(–R+ δt)+φρ– R+ exp(–R– δt). 

gives a value of parameter g0 of (0.79±0.05)×10
–5

 for a decline time of 

1.13±0.04 µs, meaning a rate of 7.0±0.5 Hz compared with an inclusive muon 

rate of ~2kHz. It implies that the probability to have a second muon from the 

same shower detected in the Cherenkov tank when one has already been detected 

is 3.5 permil. This can be translated in an estimate of the product of the shower 
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multiplicity by the shower radial size. The low energy showers that produce the 

detected muons have kinetic energies larger than the rigidity cut-off (17 GV), say 

20 to 50 GeV typically. Their hadron multiplicity is therefore quite low. The use 

of a lateral distribution function to describe the radial shower size is not 

appropriate in such a case and one rather uses a decoherence function describing 

the dependence of the coincidence rate of two small counters on their separation. 

A crude estimate can be obtained by assuming that the mean shower has m 

muons uniformly distributed on ground in a circle of radius Rsh and that the 

Cherenkov detector is circular of radius R0. Then, For Rsh>>R0, the probability of 

detecting a second muon from the same shower is simply (m−1)(R0 /Rsh )
2
. For 

m=2, this corresponds to R0/Rsh ~6%, namely a shower radial size of ~30 m.  

Figure 7.13 illustrates a slightly better procedure using the distribution of 

the separation between two points on ground for a shower density depending 

exponentially on the distance to the shower core; convolving it with the 

distribution of the separation between two points in the detector gives a very 

similar dependence to that obtained before. For m >2, we obtain larger estimates 

of Rsh, at variance with higher energies [23] where the shower size is governed 

by the Molière radius, ~80 m at sea level. 

 

 
 

Figure 7.13 Left: distribution of the separation between two points on ground for a 

shower density distribution of the form exp(−r); Middle: distribution of the separation 

between two points in the Cherenkov tank for a uniform density distribution; Right: 

dependence on Rsh /R0 of the probability to detect a second muon from the same shower 

(m=2); the straight line is for (m−1)(R0 /Rsh)
2
.    

Rsh /R0 distance (m) distance (m) 
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8. Summary and conclusions 

 

 For now nine years, the Pierre Auger Collaboration, with which our 

laboratory, VATLY, is associated, has been operating a giant ground array of 

Cherenkov detectors covering 50×60 km
2
 in the Argentinean Pampas [2, 12]. Its 

aim is the study of extragalactic Ultra High Energy Cosmic Rays, with energies 

in the 10
20 

eV range. It has already given first evidences for a cut-off of the 

energy spectrum [24] corresponding to the photoproduction threshold on the 

Cosmic Microwave Background (GZK cut-off) and for a positive, but weak, 

correlation with nearby galaxies – in particular Centaurus A – as potential 

sources [25]. 

 As a contribution to the work of the Pierre Auger Collaboration, we have 

assembled on the roof of our Hanoi laboratory a replica of one of the 1’660 

Cherenkov detectors of the Pierre Auger Observatory (PAO) with the aim of 

training and gaining familiarity with the tools and methods used at the PAO. 

Together with other equipment, including scintillator detectors and additional 

smaller Cherenkov detectors, it has given us an opportunity to explore some 

features of the cosmic ray flux in Hanoi where the rigidity cut-off reaches its 

world maximum of 17 GV. 

 The present work covers detailed studies that have been made of the 

performance of the VATLY Cherenkov detector with emphasis on its response to 

low signals. The detector is a water cylinder, 10 m
2
 in area and 1.2 m in height, 

equipped with three down-looking 9” Photo Multiplier Tubes (PMT). In the PAO 

regime, where the detectors sample ~5 ppm of the PAO area, one deals with 

signal reaching 10
3
 VEM (Figure 1.7), a VEM – Vertical Equivalent Muon – 

being the signal produced by a vertical relativistic muon impacting a detector in 

its centre. Here, we explore the response down to a tenth of a VEM, implying a 

dynamical range in excess of 10
4
. Such a large dynamical range is important to 

obtain accurate measurements of the Lateral Distribution Function (LDF) and, 

consequently, of the shower energy. It is limited by saturation at high signal 

amplitudes, which is taken care of by recording the raw anode signal together 
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with the amplified dynode signal of each PMT. Its behaviour at low signal 

amplitudes is one of the main objectives of the present study. 

 The method that we have been using to study low amplitude signals is to 

look for decays of muons stopping in the water volume of the Cherenkov 

detector. Only a small fraction of cosmic muons, typically 6 to 7 %, do stop in 

there and of these, an even smaller fraction produces sufficient Cherenkov light 

to be detected before stopping (typically a quarter of a VEM). The subsequent 

muon decays occur on average some two microseconds afterward, producing an 

electron (or positron) and a neutrino-antineutrino pair that leaves the water 

volume undetected. The electron carries an average energy of only ~35 MeV, 

producing a signal of only a fraction of a VEM in ideal detecting conditions. Our 

experimental set-up has been designed to study such decays by detecting the 

signals produced by both the stopping muon and the decay electron. Such pairs 

have been detected under various experimental conditions and the amplitude of 

the electron signal has been recorded together with the time separating the two 

signals. Such data make it possible, using the different time dependences, to 

disentangle the contribution of muon decays from that of random muon 

coincidences. 

 In addition to the main Cherenkov detector, we have assembled a 

scintillator hodoscope that provides a trigger on central relativistic feed-through 

muons for calibration purpose and a scintillator detector used as a reference in 

which to observe muon decays in standard experimental conditions. 

 We have collected a large sample of data that provide very clear evidence 

for muon decays with the expected time dependence including a small 

contribution from muon capture in oxygen (Figure 6.5). The amplitude of the 

electron signal (Figures 6.17 and 7.11) is observed at the level of a fraction of 

VEM, and only the upper part of its distribution can be detected. The muon 

distribution (Figure 6.16 and 7.11) provides evidence for peaking at low 

amplitudes that cannot be explained as having a muonic origin. A detailed 

comparison with simulations has shown that it must be assigned to a soft 

component (Sections 7.2 and 7.3), known to be essentially made of electrons, 

positrons and photons, which appears particularly important in the present 
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experimental set-up due to the large sensitive volume of the Cherenkov detector. 

The possibility of a significant contamination by spurious sources prevents us 

from quoting a precise value for its rate. Good fits of the model to the measured 

data have been obtained for both the charge and time distributions (Figures 6.4, 

6.14, 7.10 and 7.11). They allow for obtaining useful evaluations of the number 

of photoelectrons per VEM, 13.0±0.9, and of the mean muon energy, 

4.0
3.00.4 +

− GeV. The detection efficiency of electrons has been modelled using an 

estimate of the effective electron shower size, ~36±6 cm, which is found at the 

scale of the radiation length in water as expected. The end point of the electron 

charge distribution, corresponding to a kinetic energy of 53 MeV, has been 

measured to be Eend=0.275±0.018 VEM in agreement with expectation. The 

occurrence of muon pairs from a same shower has been measured with a rate of 

7.0±0.5 Hz, implying a decoherence function of the order of 30 m for a sea level 

multiplicity of two muons per shower.  

 The scintillator hodoscope has been successfully used to calibrate the 

Cherenkov detector and has given evidence for a resolution of 22.5% compared 

with ~15% for PAO detectors. The scintillator reference detectors have validated 

the interpretation of the Cherenkov data as expected and have provided an 

evaluation of the capture rate in carbon, (1.2±0.6)×10
–2

 µs
–1

, in good agreement 

with expectation. 

 Simulations have been extensively used to compare our measurements 

with expectations and evaluate parameters of relevance. They turned out to be 

very useful to provide deeper insight into the mechanisms at play. Their results 

have been presented at various stages of the present study, including in particular 

Chapters 3 and 7. The measured event rates are found in good agreement with 

their predictions. Simulation has revealed the inadequacy of describing the effect 

of the discriminator thresholds on the sum Cherenkov signal by a sharp cut-off 

function and has allowed for a more faithful description. A simulation of the light 

collection mechanism has suggested the presence of a small zenith angle 

dependence of its efficiency, which has been found consistent with observation. 

 The availability of a replica of a PAO Cherenkov detector in our 

laboratory has proven to be useful not only for training purposes but also for 
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contributing a better understanding of the response of such a detector, in 

particular to low amplitude signals at the level of a fraction of a VEM. It will 

continue to be used as a training tool for students, not only at the scale of the 

VATLY team but at a broader scale.  
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